Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T12:56:10.976Z Has data issue: false hasContentIssue false

Hydrogen diffusion and effect of grain size on hydrogenation kinetics in magnesium hydrides

Published online by Cambridge University Press:  31 January 2011

X. Yao*
Affiliation:
Australian Research Council (ARC) Center for Functional Nanomaterials, University of Queensland, QLD 4072, Australia; and School of Engineering, James Cook University, Townsville, QLD 4811, Australia
Z.H. Zhu
Affiliation:
Australian Research Council (ARC) Center for Functional Nanomaterials, University of Queensland, QLD 4072, Australia
H.M. Cheng
Affiliation:
National Laboratory of Materials Science, Institute of Metals Research, Shenyang 110015, China
G.Q. Lu
Affiliation:
Australian Research Council (ARC) Center for Functional Nanomaterials, University of Queensland, QLD 4072, Australia
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Hydrogenation and dehydrogenation of metal hydrides are of great interest because of their potential in on-board applications for hydrogen vehicles. This paper aims to study hydrogen diffusion in metal hydrides, which is generally considered to be a controlling factor of hydrogenation/dehydrogenation. The present work first calculated temperature-dependent hydrogen diffusion coefficients by a theoretical model incorporated with experimental data in a Mg-based system and accordingly the activation energy. The grain size effect on diffusion in nanoscale was also investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Huot, J., Liang, G., Boily, S., Van Neste, A.Schulz, R.: Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J. Alloys Compd. 293–295, 495 1999CrossRefGoogle Scholar
2Zaluski, I., Zaluska, A.Strom-Olsen, J.O.: Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage. J. Appl. Phys. A 72, 157 2001CrossRefGoogle Scholar
3Liang, G., Boily, S., Huot, J., Van Neste, A.Schulz, R.: Hydrogen absorption properties of a mechanically milled Mg-50wt%LaNi5 composite. J. Alloys Compd. 268, 302 1998CrossRefGoogle Scholar
4Yao, X., Wu, C.Z., Wang, H., Cheng, H.M.Lu, G.Q.: Effects of carbon nanotubes and metal catalysts on hydrogen storage in magnesium nanocomposites. J. Nanosci. Nanotechnol. 6, 494 2006CrossRefGoogle ScholarPubMed
5Wu, C.Z., Wang, P., Yao, X., Liu, C., Chen, D.M., Lu, G.Q.Cheng, H.M.: Effects of SWNT and metallic catalyst on hydrogen absorption/desorption performance of MgH2. J. Phys. Chem. B 109, 22217 2005CrossRefGoogle ScholarPubMed
6Bobet, J.L., Grigorova, E., Khrussanova, M., Khristov, M., Stefanov, P., Peshev, P.Radev, D.: Hydrogen sorption properties of graphite-modified magnesium nanocomposites prepared by ball-milling. J. Alloys Compd. 366, 298 2004CrossRefGoogle Scholar
7Bobet, J.L., Kandavel, M.Ramaprabhu, S.: Effects of ball-milling conditions and additives on the hydrogen sorption properties of Mg + 5 wt% Cr2O3 mixtures. J. Mater. Res. 21, 1747 2006CrossRefGoogle Scholar
8Zaluski, I., Zaluska, A., Tessier, P., Strom-Olsen, J.O.Schulz, R.: Nanocrystalline hydrogen absorbing alloys. Mater. Sci. Forum 225, 853 1996CrossRefGoogle Scholar
9Zaluski, I., Zaluska, A.Strom-Olsen, J.O.: Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 288, 217 1999CrossRefGoogle Scholar
10Wang, P., Wang, A.M., Ding, B.Z.Hu, Z.Q.: Mg–Fe1.2Ti (amorphous) composite for hydrogen storage. J. Alloys Compd. 34, 243 2002CrossRefGoogle Scholar
11Shang, C.X.Guo, Z.X.: Effect of carbon on hydrogen desorption and absorption of mechanically milled MgH2. J. Power Source. 129, 73 2004CrossRefGoogle Scholar
12Fujii, H.Ichikawa, T.: Recent development on hydrogen-storage materials composed of light elements. Phys. Rev. B: Condens. Matter Mater. Phys. 383, 45 2006Google Scholar
13Perez, P., Garces, G.Adeva, P.: Mechanical behaviour amorphous Mg–23.5Ni ribbons. J. Alloys Compd. 381, 114 2004CrossRefGoogle Scholar
14Spassov, T.Koster, U.: Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy. J. Alloys Compd. 279, 279 1998CrossRefGoogle Scholar
15Chen, P., Xiong, Z., Luo, J., Lin, J.Tan, K.L.: Interaction of hydrogen with metal nitrides and imides. Nature 420, 302 2002CrossRefGoogle ScholarPubMed
16Nakamori, Y., Kitahara, G., Miwa, K., Ohba, N., Noritake, T., Towatab, S.Orimo, S.: Hydrogen storage properties of Li–Mg–N–H systems. J. Alloys Compd. 404–406, 396 2005CrossRefGoogle Scholar
17Luo, W.Sickafoose, S.: Thermodynamic and structural characterization of the Mg–Li–N–H hydrogen storage system. J. Alloys Compd. 407, 274 2006CrossRefGoogle Scholar
18Yao, X., Wu, C.Z., Du, A.J., Lu, G.Q., Cheng, H.M., Smith, S.C., Zou, J.He, Y.: Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage. J. Phys. Chem. B 110, 11679 2006CrossRefGoogle ScholarPubMed
19Vegge, T.: Locating the rate-limiting step for the interaction of hydrogen with Mg(0001) using density-functional theory calculations and rate theory. Phys. Rev. B 70, 035412 2004CrossRefGoogle Scholar
20Norskov, J.K.Houmoller, A.M.: Adsorption and dissociation of H2 on Mg surface. Phys. Rev. Lett. 46, 257 1981CrossRefGoogle Scholar
21Bird, D.M., Clarke, L.J., Payne, M.C.Stich, I.: Dissociation of H2 on Mg(0001). Chem. Phys. Lett. 212, 518 1993CrossRefGoogle Scholar
22Du, A.J., Smith, S.C., Yao, X.Lu, G.Q.: Hydrogen spillover mechanism on Pd-doped Mg surface revealed by ab initio density functional calculation. J. Am. Chem. Soc. 129, 10201 2007CrossRefGoogle ScholarPubMed
23San-Martin, A.Manchester, F.D.: Phase Diagrams of Binary Magnesium Alloys, edited by A.A. Nayer-Hashemi and J.B. Clark ASM International Materials Park, OH 1988Google Scholar
24Berlouis, L.E.A., Cabera, E., Hall-Barientos, E., Hall, P.J., Dodd, S.B., Morris, S.Imam, M.A.: Thermal analysis investigation of hydriding properties of nanocrystalline Mg–Ni- and Mg–Fe-based alloys prepared by high-energy ball milling. J. Mater. Res. 16, 45 2001CrossRefGoogle Scholar
25Crank, J.: The Mathematics of Diffusion Oxford University Press London 1964Google Scholar
26Khawam, A.Flanagan, D.R.: Solid-state kinetic models: Basics and mathematical fundamentals. J. Phys. Chem. B 110, 17315 2006CrossRefGoogle ScholarPubMed
27Du, A.J., Smith, S.C., Yao, X.Lu, G.Q.: The role of Ti as a catalyst for the dissociation of hydrogen on a Mg(0001) surface. J. Phys. Chem. B 109, 18037 2005CrossRefGoogle Scholar
28Du, A.J., Smith, S.C., Yao, X.Lu, G.Q.: The catalytic role of sub-surface carbon in the chemisorption of hydrogen on a Mg(0001) surface: An ab-initio study. J. Phys. Chem. B 110, 1814 2006CrossRefGoogle Scholar
29Wu, C.Z., Wang, P., Yao, X., Liu, C., Chen, D.M., Lu, G.Q.Cheng, H.M.: Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride. J. Alloys Compd. 414, 259 2006CrossRefGoogle Scholar
30Sholl, D.S.: Using density-functional theory to study hydrogen diffusion in metals: A brief overview. J. Alloys Compd. 446–447, 462 2007CrossRefGoogle Scholar
31Jensen, T.R., Andreasen, A., Vegge, T., Andreasen, J.W., Stahl, K., Pedersen, A.S., Nielsen, M.M., Molenbroek, A.M.Besenbacher, F.: Dehydrogenation kinetics of pure and nickel-doped magnesium hydride investigated by in situ time-resolved powder x-ray diffraction. Int. J. Hydrogen Energy 31, 2052 2006CrossRefGoogle Scholar
32Andreasen, A., Sørensen, M.B., Burkarl, R., Møller, B., Molenbroek, A.M., Pedersen, A.S., Vegge, T.Jensen, T.R.: Dehydrogenation kinetics of air-exposed MgH2/Mg2Cu and MgH2/MgCu2 studied with in situ x-ray powder diffraction. Appl. Phys. A 82, 515 2006CrossRefGoogle Scholar