Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T09:27:49.225Z Has data issue: false hasContentIssue false

Hydrogen behavior in Mg+-implanted graphite

Published online by Cambridge University Press:  01 April 2006

W. Jiang*
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
V. Shutthanandan
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
Y. Zhang
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
S. Thevuthasan
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
W.J. Weber
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
G.J. Exarhos
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A graphite wafer has been implanted with Mg+ to produce a uniform Mg concentration. Subsequent H+ implantation covered the Mg+-implanted and -unimplanted regions. Ion-beam analysis shows a higher H retention in graphite embedded with Mg than in regions without Mg. A small amount of H diffuses out of the H+-implanted graphite during thermal annealing at temperatures up to 300 °C. However, significant H release from the region implanted with Mg+ and H+ ions occurs at 150 °C; further release is also observed at 300 °C. The results suggest that there are efficient H trapping centers and fast pathways for H diffusion in the Mg+-implanted graphite, which may prove highly desirable for reversible H storage.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schlapbach, L., Zuttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001).CrossRefGoogle ScholarPubMed
2.Bogdanovic, B., Sandrock, G.: Catalyzed complex metal hydrides. MRS Bull. 27, 712 (2002).CrossRefGoogle Scholar
3.Williamson, A.J., Reboredo, F.A., Galli, G.: Chemisorption on semiconductor nanocomposites: A mechanism for hydrogen storage. Appl. Phys. Lett. 85, 2917 (2004).CrossRefGoogle Scholar
4. Workshop report chaired by M. Dresselhaus: Basic Research Needs for the Hydrogen Economy, Office of Science, U.S. Department of Energy, Washington, DC, May 13–15, 2003.Google Scholar
5.Noritake, T., Aoki, M., Towata, S., Seno, Y., Hirose, Y., Nishibori, E., Takata, M., Sakata, M: Chemical bonding of hydrogen in MgH2. Appl. Phys. Lett. 81, 2008 (2002).CrossRefGoogle Scholar
6.Imamura, H., Tabata, S., Shigetomi, N., Takesue, Y., Sakata, Y.: Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium. J. Alloys Comp. 330–332, 579 (2002).CrossRefGoogle Scholar
7.Au, M. Hydrogen storage properties of magnesium based nanostructured/amorphous composite materials in Materials and Technology for Hydrogen Economy, edited by Naeri, G-A., Nazri, M., Young, R., and Chen, P. (Mater. Res. Soc. Symp. Proc. 801, Warrendale, PA, 2004). BB1.5, p. 41.CrossRefGoogle Scholar
8.Meldrum, A., Haglund, R.F. Jr. Boatner, L.A., White, C.W.: Nanocomposite materials formed by ion implantation. Adv. Mater. 13, 1431 (2001).3.0.CO;2-Z>CrossRefGoogle Scholar
9.Wang, C.M., Thevuthasan, S., Shutthanandan, V., Cavanagh, A., Jiang, W., Thomas, L.E., Weber, W.J.: Microstructure of precipitated Au nanoclusters in MgO. J. Appl. Phys. 93, 6327 (2003).CrossRefGoogle Scholar
10.Ziegler, J.F., Biersack, J.P., Littmark, U.: The Stopping and Range of Ions in Solids (Pergamon, New York, 1985); see also http://www.srim.org/..Google Scholar
11.Morita, K., Ohtsuka, K., Hasebe, Y.: Dynamic measurements of depth profiles of hydrogen implanted into graphite at elevated temperatures. J. Nucl. Mater. 162–164, 990 (1989).CrossRefGoogle Scholar
12.Siegele, R., Roth, J., Scherzer, B.M.U., Pennycook, S.J.: Damage and deuterium trapping in highly-oriented pyrolytic graphite. J. Appl. Phys. 73, 2225 (1993).CrossRefGoogle Scholar
13.Katayama, K., Nishikawa, M.: Release behavior of tritium from graphite material. Fusion Sci. Tech. 41, 53 (2002).CrossRefGoogle Scholar
14.Chen, Y., Gonzalez, R., Tsang, K.L.: Diffusion of deuterium and hydrogen in rutile TiO2 crystals at low temperatures. Phys. Rev. Lett. 53, 1077 (1984).CrossRefGoogle Scholar
15.Belkbir, L., Joly, E., Gérard, N.: Comparative study of the formation-decomposition mechanisms and kinetics in LaNi5 and magnesium reversible hydrides. Int. J. Hydrogen Energy 6, 285 (1981).CrossRefGoogle Scholar
16.Higuchi, K., Yamamoto, K., Kajioka, H., Toiyama, K., Honda, M., Orimo, S., Fujii, H.: Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films. J. Alloys Comp. 330–332, 526 (2002).CrossRefGoogle Scholar
17.Doyle, B.L., Wampler, W.R., Brice, D.K.: Temperature dependence of H saturation and isotope exchange. J. Nucl. Mater. 103, 513 (1981).CrossRefGoogle Scholar
18.Compagnini, G., Baratta, G.: Polarized Raman spectroscopy in ion irradiated graphite. Appl. Phys. Lett. 61, 1796 (1992).CrossRefGoogle Scholar
19.Elman, B.S., Shayegan, M., Dresselhaus, M.S., Mazurek, H., Dresselhaus, G.: Structural characterization of ion-implanted graphite. Phys. Rev. B 25, 4142 (1982).CrossRefGoogle Scholar
20.Kaschner, A., Siegle, H., Kaczmarczyk, G., Strassburg, M., Hoffmann, A., Thomsen, C., Birkle, U., Einfeldt, S., Hommel, D.: Local vibrational modes in Mg-doped GaN grown by molecular beam epitaxy. Appl. Phys. Lett. 74, 3281 (1999).CrossRefGoogle Scholar
21.Cuscó, R., Artús, L., Pastor, D., Naranjo, F.B., Calleja, E.: Local vibrational modes of H complexes in Mg-doped GaN grown by molecular beam epitaxy. Appl. Phys. Lett. 84, 897 (2004).CrossRefGoogle Scholar