Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T06:32:35.476Z Has data issue: false hasContentIssue false

How to tailor the porous structure of alumina and aluminosilicate gels and glasses

Published online by Cambridge University Press:  31 January 2011

V. Vendange
Affiliation:
ONERA-OM BP 72, 92322, Châtillon, France
Ph. Colomban*
Affiliation:
ONERA-OM BP 72, 92322 Châtillon, France and LASNIR CNRS, 2 rue Henry Dunant, 94320 Thiais, France
*
b) Tel: 33 (1) 49 78 11 05. Fax: 33 (1) 49 78 13 23.
Get access

Abstract

Optically clear monolithic (OCM) gels of mesoporous aluminosilicates (average pore diameter 3.6 nm) and alumina (6 nm) have been prepared by slow hydrolysis-polycondensation of alkoxides and converted into OCM mesoporous glasses by heating. In order to change the properties, different ways of modifying the pore size and structure are proposed. We show that addition of boron oxide reduces the average pore diameter. A higher effect can be obtained by addition of a surfactant. In this case the mesoporous matrix becomes microporous (d < 2 nm). Another way of modifying the pore structure consists of introducing nanoprecipitates inside the porosity by an impregnation process. Modifications of the porous structure are different in alumina and aluminosilicates.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hench, L. L., Araùjo, F.G., West, J.K., and La Torre, G.P., J. Sol-Gel Sci. Technol. 2, 649 (1994).CrossRefGoogle Scholar
2.Lombardi, T. and Klein, L. C., Adv. Ceram. Mater. 3, 167 (1988).CrossRefGoogle Scholar
3.Rama Rao, G. V., Venkadesan, S., and Saraswati, V., J. Non-Cryst. Solids 111, 103 (1989).CrossRefGoogle Scholar
4.Hench, L. L., La Torre, G.P., Donovan, S., Marotta, J., and Valliere, E., Sol-Gel Optics II, edited by Mackenzie, J. D. (SPIE, Bellingham, WA, 1992), p. 94.CrossRefGoogle Scholar
5.Liu, S. and Hench, L.L., Sol-Gel Optics II, edited by Mackenzie, J. D. (SPIE, Bellingham, WA, 1992), p. 14.CrossRefGoogle Scholar
6.Davis, P. J., Brinker, C. J., and Smith, D. M., J. Non-Cryst. Solids 142, 189 (1992).CrossRefGoogle Scholar
7.Davis, P. J., Brinker, C. J., Smith, D. M., and Assink, R. A., J. Non-Cryst. Solids 142, 197 (1992).CrossRefGoogle Scholar
8.Deshpande, R., Hua, D. W., Smith, D. M., Brinker, C. J., J. Non-Cryst. Solids 144, 32 (1992).CrossRefGoogle Scholar
9.Quinson, J. F., Dumas, J., Chatelut, M., Serughetti, J., Guizard, C., Larbot, A., and Cot, L., J. Non-Cryst. Solids 113, 14 (1989).CrossRefGoogle Scholar
10.Sato, S., Murakata, T., Suzuki, T., and Ohgawara, T., J. Mater. Sci. 25, 4880 (1990).CrossRefGoogle Scholar
11.Murakata, T., Sato, S., Ohgawara, T., Watanabe, T., and Suzuki, T., J. Mater. Sci. 27, 1567 (1992).CrossRefGoogle Scholar
12.Hench, L. L., Orcel, G., and Nogués, J.L., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 35.Google Scholar
13.Hench, L. L., in Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D.R. (Wiley, New York, 1986), p. 52.Google Scholar
14.Vendange, V. and Sporn, D., unpublished.Google Scholar
15.Vendange, V. and Colomban, Ph., Microporous Materials (in press, 1995).Google Scholar
16.Vendange, V. and Colomban, Ph., unpublished.Google Scholar
17.Cao, G., Brinkman, H. W., Meijerink, J., de Vries, K. J., and Burggraaf, A. J., J. Am. Ceram. Soc. 76(9), 2201 (1993).CrossRefGoogle Scholar
18.Uhlhorn, R.J.R., Keizer, K., and Burggraaf, A. J., J. Mem. Sci. 46, 225 (1989).CrossRefGoogle Scholar
19.Colomban, Ph., Efremova, A., Regis, A., Vendange, V., Gruger, A., and Badot, J. C., Microporous Mater. 4, 65 (1995).CrossRefGoogle Scholar
20.Colomban, Ph. and Mazerolles, L., J. Mater. Sci. 26, 3503 (1991).CrossRefGoogle Scholar
21.Colomban, Ph. and Vendange, V., J. Non-Cryst. Solids 147/148, 245 (1992).CrossRefGoogle Scholar
22.Vendange, V. and Colomban, Ph., J. Sol-Gel Sci. Technol. 2, 407 (1994).CrossRefGoogle Scholar
23.Weast, R. C., CRC Handbook of Chemistry and Physics 66th ed. (CRC Press, Inc., Boca Raton, FL, 1985), B-147.Google Scholar
24.Cohen, R. L., in Applications of Mössbauer Spectroscopy (Academic Press, New York, 1980), p. 113.Google Scholar
25.Vendange, V. and Colomban, Ph., Mater. Sci. Eng. A168, 199 (1993).CrossRefGoogle Scholar
26.Brunauer, S., Emmet, P. H., and Teller, E., J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
27.Barret, E. P., Joyner, L. G., and Halenda, P. H., J. Am. Chem. Soc. 73, 373 (1951).CrossRefGoogle Scholar
28.International Union of Pure and Applied Chemistry (IUPAC), Pure and Appl. Chem. 57 (4), 603 (1985).CrossRefGoogle Scholar
29.Gregg, S. J. and Sing, K. S., Adsorption Surface Area and Porosity (Academic Press, London, 1982), p. 94.Google Scholar
30.Yamane, M. and Okano, S., Yogyo-kyokai Shi, 87, 434 (1979).CrossRefGoogle Scholar
31.Schaefer, D. W. and Keefer, K. D., Fractals in Physics, edited by Pietronero, and Tosatti, (North-Holland, Amsterdam, 1986), p. 39.CrossRefGoogle Scholar
32.Himmel, B., Gerber, Th., and Bürger, H., J. Non-Cryst. Solids 91, 122 (1987).CrossRefGoogle Scholar
33.Zarzycki, J., J. Non-Cryst. Solids 147/148, 176 (1992).CrossRefGoogle Scholar
34.Colomban, Ph., J. Mater. Sci. 24, 3001 (1989); ibidem 3011.CrossRefGoogle Scholar
35.Nightingale, E. R. Jr., J. Phys. Chem. 63, 1381 (1959).CrossRefGoogle Scholar
36.Quinson, J. F., Dumas, J., Chatelut, M., Serughetti, J., Guizard, C., Larbot, A., and Cot, L., J. Non-Cryst. Solids 113, 14 (1989).CrossRefGoogle Scholar
37.Sakka, S. and Adachi, T., J. Mater. Sci. 25, 3408 (1990).CrossRefGoogle Scholar
38.Davis, P. J., Brinker, C. J., Smith, D. M., and Assink, R. A., J. Non-Cryst. Solids 142, 197 (1992).CrossRefGoogle Scholar
39.Vendange, V., Thesis, University Paris VI (1994).Google Scholar