Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T11:39:17.624Z Has data issue: false hasContentIssue false

High-throughput experimentation in resistive gas sensor materials development

Published online by Cambridge University Press:  22 November 2012

Clemens J. Belle
Affiliation:
Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany; and JARA-Fundamentals of Future Information Technologies, 52074 Aachen, Germany
Ulrich Simon*
Affiliation:
Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany; and JARA-Fundamentals of Future Information Technologies, 52074 Aachen, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The review describes the workflow of a high-throughput screening process for the rapid identification of new and improved gas sensor materials. Multiple nanoparticulate metal oxides were synthesized via the polyol method, and material diversity was achieved by volume and/or surface doping. The resulting materials were applied as thick films on multielectrode substrates to serve as chemiresistors. This high-throughput approach including automated preparation, complex impedance measurements, and evaluation procedures enables reproducible measurements and their visual representation. Selected examples demonstrate the state of the art for applying high-throughput impedance spectroscopy in search of new sensitive and selective gas sensing materials as well as in analyzing structure–property relations.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brattain, W.H. and Bardeen, J.: Surface properties of germanium. Bell. Syst. Technol. J. 32, 1 (1953).CrossRefGoogle Scholar
Heiland, G.: About the influence of adsorbed oxygen on the electrical conductivity of zinc oxide crystals (Zum Einfluß von adsorbiertem Sauerstoff auf die elektrische Leitfähigkeit von Zinkoxydkristallen). Z. Phys. 138(3–4), 459 (1954) [in German].CrossRefGoogle Scholar
Heiland, G.: About the influence of hydrogen on the electrical conductivity at the surface of zinc oxide crystals (Zum Einfluß von Wasserstoff auf die elektrische Leitfähigkeit an der Oberfläche von Zinkoxydkristallen). Z. Phys. 148(1), 15 (1957) [in German].CrossRefGoogle Scholar
Seiyama, T., Kato, A., Fujiishi, K., and Nagatami, M.: A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34(11), 1502 (1962).CrossRefGoogle Scholar
Seiyama, T. and Kagawa, S.: Detector for gaseous components with semiconductive thin films. Anal. Chem. 38, 1069 (1966).CrossRefGoogle Scholar
Taguchi, N.: Japan Patent No. 45-38200 1962; Japan Patent No. 47-38840 1963; U.S. Patent No. 3644795 1970.Google Scholar
Eranna, G., Joshi, B.C., Runthala, D.P., and Gupta, R.P.: Oxide materials for development of integrated gas sensors–A comprehensive review. Crit. Rev. Solid State Mater. Sci. 29, 111 (2004).CrossRefGoogle Scholar
Yokokawa, H., Sakai, N., Horita, T., and Yamaji, K.: Recent developments in solid oxide fuel cell materials. Fuel Cells 1(2), 117 (2001).3.0.CO;2-Y>CrossRefGoogle Scholar
Xinshu, N., Honghua, L., and Guogang, L.: Preparation, characterization and photocatalytic properties of REFeO3 (RE = Sm, Eu, Gd). J. Mol. Catal. A: Chem 232(1–2), 89 (2005).Google Scholar
Peña, M.A. and Fierro, J.L.G.: Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981 (2001).CrossRefGoogle ScholarPubMed
Keller, N., Mistrik, J., Visnovsky, S., Schmool, D.S., Dumont, Y., Renaudin, P., Guyot, M., and Krishnan, R.: Magneto-optical Faraday and Kerr effect of orthoferrite thin films at high temperatures. Eur. Phys. J. B 21(1), 67 (2001).CrossRefGoogle Scholar
Martinelli, G., Carotta, M.C., Ferroni, M., Sadaoka, Y., and Traversa, E.: Screen-printed perovskite-type thick films as gas sensors for environmental monitoring. Sens. Actuators, B 55, 99 (1999).CrossRefGoogle Scholar
Niu, X., Du, W., and Du, W.: Preparation, characterization and gas-sensing properties of rare earth mixed oxides. Sens. Actuators, B 99, 399 (2004).CrossRefGoogle Scholar
Arakawa, T., Tsuchi-ya, S., and Shiokawa, J.: Catalytic activity of rare-earth orthoferrites and orthochromites. Mater. Res. Bull. 16, 97 (1981).CrossRefGoogle Scholar
Aono, H., Traversa, E., Sakamoto, M., and Sadaoka, Y.: Crystallographic crystallization and NO2 gas sensing property of LnFeO3 prepared by thermal decomposition of Ln-Fe hexacyanocomplexes, Ln[Fe(CN)6]*nH2O, Ln = La, Nd, Sm, Gd, and Dy. Sens. Actuators, B 94, 132 (2003).CrossRefGoogle Scholar
Liu, X., Hu, J., Cheng, B., Qin, H., Zhao, M., and Yang, C.: First-principles study of O2 adsorption on the LaFeO3 (010) surface. Sens. Actuators, B 139, 520 (2009).CrossRefGoogle Scholar
Liu, X., Hu, J., Cheng, B., Qin, H., and Jiang, M.: Preparation and gas sensing characteristics of p-type semiconducting LnFe0.9Mg0.1O3 (Ln = Nd, Sm, Gd and Dy) materials. Curr. Appl Phys. 9, 613 (2009).CrossRefGoogle Scholar
Toyama Prefecture: Jpn. Kokai Tokkyo Koho. JP 59067601. Pdf-file number “JPA 1984067601” (1984).Google Scholar
Chu, X., Liu, X., Wang, G., and Meng, G.: Preparation and gas sensing properties of nano-CoTiO3. Mater. Res. Bull. 34(10/11), 1789 (1999).CrossRefGoogle Scholar
Potyrailo, A.R. and Mirsky, V.M.: Combinatorial and high-throughput development of sensing materials: The first 10 years. Chem. Rev. 108, 770 (2008).CrossRefGoogle ScholarPubMed
Kohl, C-D.: Electronic noses. In Nanoelectronics and Information Technology, Waser, R., ed.; (Wiley-VCH, Berlin, Germany, 2005).Google Scholar
Bârsan, N.: Conduction models in gas-sensing SnO2 layers: Grain-size effects and ambient atmosphere influence. Sens. Actuators, B 17(3), 241 (1994).CrossRefGoogle Scholar
Bârsan, N., Schweizer-Berberich, M., and Göpel, W.: Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: A status report. Fresenius J. Anal. Chem. 365(4), 287 (1999).CrossRefGoogle Scholar
Baraton, M.I. and Merhari, L.: Advances in air quality monitoring via nanotechnology. J. Nanopart. Res. 6(1), 107 (2004).CrossRefGoogle Scholar
Korotcenkov, G.: Practical aspects in design of one-electrode semiconductor gas sensors: Status report. Sens. Actuators, B 121(2), 664 (2007).CrossRefGoogle Scholar
Yamazoe, N., Sakai, G., and Shimanoe, K.: Oxide semiconductor gas sensor. Catal. Surv. Asia 7, 63 (2003).CrossRefGoogle Scholar
Yamazoe, N.: New approaches for improving semiconductor gas sensors. Sens. Actuators, B 5(1–4), 7 (1991).CrossRefGoogle Scholar
Samson, S. and Fonstad, C.G.: Defect structure and electronic donor levels in stanic oxide crystals. J. Appl. Phys. 44(10), 4618 (1973).CrossRefGoogle Scholar
Jarzebski, Z.M. and Marton, J.M.: Physical properties of SnO2 materials. J. Electrochem. Soc. 123, 299C (1976).CrossRefGoogle Scholar
Maier, J. and Göpel, W.: Investigations of the bulk defect chemistry of polycrystalline tin(IV) oxide. J. Solid State Chem. 72(2), 293 (1988).CrossRefGoogle Scholar
Göpel, W. and Schierbaum, K.D.: Chemisorption and charge transfer at ionic semiconductor surfaces: Imaging in designing gas sensors. Sens. Actuators, B 2627, 1 (1995).CrossRefGoogle Scholar
Weisz, P.B.: Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis. J. Chem. Phys. 21, 1531 (1953).CrossRefGoogle Scholar
Lampe, U., Fleischer, M., Reitmeier, N., Meixner, H., McMonagle, J.B., and Marsch, A.: New metal oxide sensors: Materials and properties. In Sensors; Göpel, W., Hesse, J., and Zemel, J.N., eds.; (Wiley-VCH, Weinheim, Germany, 2, 1997); p. 29.Google Scholar
Barton, M.I., Merhari, L., Ferkerl, H., and Catagnet, J.F.: Comparison of the gas sensing properties of tin, indium and tungsten oxides nanopowders: Carbon monoxide and oxygen detection. Mater. Sci. Eng., C 19, 315 (2002).CrossRefGoogle Scholar
Madou, J. and Morrison, S.R.: Chemical Sensing with Solid State Devices (Academic Press, New York, 1989).Google Scholar
Lenaerts, S., Honore, M., Huyberechts, G., Roggen, J., and Maes, G.: In situ infrared and electrical characterization of tin dioxide gas sensors in nitrogen/oxygen mixtures at temperatures up to 720 K. Sens. Actuators, B 19, 478 (1994).CrossRefGoogle Scholar
Ogawa, H., Nishikawa, M., and Abe, A.: Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J. Appl. Phys. 53, 4448 (1982).CrossRefGoogle Scholar
Bârsan, N. and Weimar, U.: Understanding the fundamental principles of metal oxide based gas sensors: The example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Matter 15(20), R813 (2003).CrossRefGoogle Scholar
Nemov, T.G. and Yordanov, S.P.: Ceramic Sensors–Technology and Application (Technomic Publishing Company Inc., Lancaster, PA, 1996), p. 138.Google Scholar
Pardo, M. and Sberveglieri, G.: Electronic olfactory systems based on metal oxide semiconductor arrays. MRS Bull. 29(19), 703 (2004).CrossRefGoogle Scholar
Franke, M.E., Koplin, T.J., and Simon, U.: Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2(1), 36 (2006).CrossRefGoogle ScholarPubMed
Korotcenkov, G.: Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng., B 139(1), 1 (2007).CrossRefGoogle Scholar
Bârsan, N., Koziej, D., and Weimar, U.: Metal oxide-based gas sensor research: How to? Sens. Actuators, B 121(1), 18 (2007).CrossRefGoogle Scholar
Benkstein, K.D. and Semancik, S.: Mesoporous nanoparticles TiO2 thin films for conductometric gas sensing on microhotplate platforms. Sens. Actuators, B 113, 445 (2006).CrossRefGoogle Scholar
Xu, C., Tamaki, J., Miura, N., and Yamazoe, N.: Correlation between gas sensitivity and crystallite size in porous SnO2-based sensors. Chem. Lett. 19(3), 441 (1990).CrossRefGoogle Scholar
Xu, C., Tamaki, J., Miura, N., and Yamazoe, N.: Relationship between gas sensitivity and microstructure of porous stannic oxide. J. Electrochem. Soc. Jpn. 58(12), 1143 (1990).Google Scholar
Rothschild, A. and Komem, Y.: The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys. 95, 6374 (2004).CrossRefGoogle Scholar
Shimizu, Y., Jono, A., Hyodo, T., and Egashira, M.: Preparation of large mesoporous SnO2 powder for gas sensor application. Sens. Actuators, B 108, 56 (2005).CrossRefGoogle Scholar
Korotcenkov, G.: The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng., R. 61, 1 (2008).CrossRefGoogle Scholar
Schmidt-Mende, L., and MacManus-Driscoll, J.L.: ZnO–nanostructures, defects, and devices. Mater. Today 10(5), 40 (2007).CrossRefGoogle Scholar
Gurlo, A.: Nanosensors: Does crystal shape matter? Small 6(11), 2077 (2010).CrossRefGoogle ScholarPubMed
Seyed-Razavi, A., Snook, I.K., and Barnard, A.S.: Origin of nanomorphology: Does a complete theory of nanoparticle evolution exist? J. Mater. Chem. 20, 416 (2010).CrossRefGoogle Scholar
Korotcenkov, G.: Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches. Sens. Actuators, B 107, 209 (2005).CrossRefGoogle Scholar
Kappler, J., Bârsan, N., Weimar, U., Diéguez, A., Alay, J.L., Romano-Rodriguez, A., Morante, J.R., and Göpel, W.: Correlation between XPS, Raman and TEM measurements and the gas sensitivity of Pt and Pd doped SnO2 based gas sensors. Fresenius J. Anal. Chem. 361(2), 110 (1998).CrossRefGoogle Scholar
Cabot, A., Arbiol, J., Morante, J.R., Weimar, U., Bârsan, N., and Göpel, W.: Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol-gel nanocrystals for gas sensors. Sens. Actuators, B 70(1–3), 87 (2000).CrossRefGoogle Scholar
Morrison, S.R.: Selectivity in semiconductor gas sensors. Sens. Actuators 12, 425 (1987).CrossRefGoogle Scholar
Kohl, D.: The role of noble metals in the chemistry of solid-state gas sensors. Sens. Actuators, B 1, 158 (1990).CrossRefGoogle Scholar
Tsud, N., Johanek, V., Stara, I., Veltruska, K., and Matolin, V.: XPS, ISS, and TPD study of Pd-Sn interactions on Pd-SnOX systems. Thin Solid Films 391, 204 (2001).CrossRefGoogle Scholar
Nehasil, V., Janecek, P., Korotcenkov, G., and Matolin, V.: Investigation of behavior of Rh deposited onto polycrystalline SnO2 by means of TPD, AES and EELS. Surf. Sci. 532535, 415 (2003).CrossRefGoogle Scholar
Ruiz, A.M., Cornet, A., Shimanoe, K., Morante, J.R., and Yamazoe, N.: Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments. Sens. Actuators, B 108(1–2), 34 (2005).CrossRefGoogle Scholar
Mohr, C., Hofmeister, H., Radnik, J., and Claus, P.: Identification of active sites in gold-catalyzed hydrogenation of acrolein. J. Am. Chem. Soc. 125, 1905 (2003).CrossRefGoogle ScholarPubMed
Fong, Y.Y., Abdullah, A.Z., Ahmad, A.L., and Bhatia, S.: Zeolite membrane based selective gas sensors for monitoring and control of gas emissions. Sens. Lett. 5(3–4), 485 (2007).CrossRefGoogle Scholar
Sahner, K., Moos, R., Matam, M., Tunney, J.J., and Post, M.: Hydrocarbon sensing with thick and thin film p-type conducting perovskite materials. Sens. Actuators, B 108, 102 (2005).CrossRefGoogle Scholar
Sahm, T., Weizhi, R., Bârsan, N., Mädler, L., and Weimar, U.: Sensing of CH4, CO and ethanol with in situ nanoparticle aerosol-fabricated multilayer sensors. Sens. Actuators, B 127(1), 63 (2007).CrossRefGoogle Scholar
Trimboli, J., Mottern, M., Verweij, H., and Dutta, P.D.: Interaction of water with titania: Implications for high-temperature gas sensing. J. Phys. Chem. 110(11), 5647 (2006).CrossRefGoogle ScholarPubMed
Cabot, A., Arbiol, J., Cornet, A., Morante, J.R., Chen, F., and Liu, M.: Mesoporous catalytic filters for semiconductor gas sensors. Thin Solid Films 436(1), 64 (2003).CrossRefGoogle Scholar
Pijolat, C., Viricelle, J.P., Tournier, G., and Montmeat, P.: Application of membranes and filtering films for gas sensors improvements. Thin Solid Films 490(1), 7 (2005).CrossRefGoogle Scholar
Hanak, J.J.: The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 5, 964 (1970).CrossRefGoogle Scholar
Hanak, J.J.: A quantum leap in the development of new materials and devices. Appl. Surf. Sci. 223(1–3), 1 (2004).CrossRefGoogle Scholar
Xiang, X-D. and Schultz, P.G.: The combinatorial synthesis and evaluation of functional materials. Physica C 282287, 428 (1997).CrossRefGoogle Scholar
van Dover, R.B., Schneemeyer, R.F., and Fleming, R.M.: Discovery of a useful thin-film dielectric using a composition-spread approach. Nature 392, 162 (1998).CrossRefGoogle Scholar
Briceño, G., Shang, H., Sun, X., Schultz, P.G., and Xiang, X-D.: A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis. Science 270, 273 (1995).CrossRefGoogle Scholar
Baeck, S.H., Jaramillo, T.F., Brändi, C., and McFarland, E.W.: Combinatorial electrochemical synthesis and characterization of tungsten-based mixed metal oxides. J. Comb. Chem. 4, 563 (2002).CrossRefGoogle ScholarPubMed
Reichenbach, H.M. and McGinn, P.J.: Combinatorial synthesis of oxide powders. J. Mater. Res. 16(4), 967 (2001).CrossRefGoogle Scholar
Hagemeyer, A., Strasser, P., and Volpe, A.F. Jr., eds.: High-throughput Screening in Chemical Catalysis: Technologies, Strategies and Applications (Wiley-VCH, Weinheim, Germany, 2004).Google Scholar
Aramova, M.A., Chang, K.S., Tageuchi, I., Jabs, H., Westerheim, D., Gonzalez-Martin, A., Kim, J., and Lewis, B.: Combinatorial libraries of semiconductor gas sensor as inorganic electronic noses. Appl. Phys. Lett. 83(6), 1255 (2003).CrossRefGoogle Scholar
Dagani, R.: A faster route to new materials. Chem. Eng. News 77(10), 51 (1999).CrossRefGoogle Scholar
Maier, W.F., Stöwe, K., and Sieg, S.: Combinatorial and high-throughput materials science. Angew. Chem. Int. Ed. 46(32), 6016 (2007).CrossRefGoogle ScholarPubMed
Simon, U., Sanders, D., Jockel, J., Heppel, C., and Brinz, T.: Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on novel gas sensor materials. J. Comb. Chem. 4, 511 (2002).CrossRefGoogle ScholarPubMed
Franzen, A., Sanders, D., Jockel, J., Scheidtmann, J., Frenzer, G., Maier, W.F., Brinz, T., and Simon, U.: High-throughput method for the impedance spectroscopic characterization of resistive gas sensors. Angew. Chem. Int. Ed. 43(6), 752 (2004).CrossRefGoogle Scholar
Simon, U., Sanders, D., Jockel, J., and Brinz, T.: Setup for high-throughput impedance screening of gas-sensing materials. J. Comb. Chem. 7(5), 682 (2005).CrossRefGoogle ScholarPubMed
Figlarz, M., Fiévet, F., and Lagier, J.P.: Process for reducing metallic compounds using polyols, and metallic powders produced thereby. Europe Patent No. 0113281, 1982.Google Scholar
Toneguzzo, P., Viau, G., Acher, O., Guillet, F., Bruneton, E., Fievet-Vincent, F., and Fievet, F.: CoNi and FeCoNi fine particles prepared by the polyol process: Physico-chemical characterization and dynamic magnetic properties. J. Mater. Sci. 35, 3767 (2000).CrossRefGoogle Scholar
Poul, L., Ammar, S., Jouini, N., Fievet, F., and Villain, F.: Synthesis of inorganic compounds (metal, oxide and hydroxide) in medium: A versatile route related to the sol-gel process. J. Sol-Gel Sci. Technol. 26, 261 (2003).CrossRefGoogle Scholar
Jézéquel, D., Guenot, J., Jouini, N., and Fiévet, F.: Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics. J. Mater. Res. 10, 77 (1995).CrossRefGoogle Scholar
Feldmann, C. and Jungk, H.: Polyol-mediated preparation of nanoscale oxide particles. Angew. Chem. Int. Ed. 40(2), 359 (2001).3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Siemons, M., Weirich, T., Mayer, J., and Simon, U.: Preparation of nanosized perovskite-type oxides via polyol method. Z. Anorg. Allg. Chem. 630, 2083 (2004).CrossRefGoogle Scholar
Siemons, M., Leifert, A., and Simon, U.: Preparation and gas sensing characteristics of nanoparticulate p-type semiconducting LnFeO3 and LnCrO3 materials. Adv. Funct. Mater. 17, 2189 (2007).CrossRefGoogle Scholar
Siemons, M. and Simon, U.: Polyol-mediated synthesis of LnCrO3 (Ln = La, Pr, Sm-Lu). Z. Anorg. Allg. Chem. 632(12–13), 2159 (2006).CrossRefGoogle Scholar
Unpublished results.Google Scholar
Koplin, T.J.: Development and application of high-throughput techniques to the synthesis and research into new nanostructured sensor materials (Entwicklung und Anwendung von Hochdurchsatztechniken zur Darstellung und Untersuchung neuer nanostrukturierter Sensormaterialien). Ph.D. Thesis, RWTH Aachen University, 2006 [in German].Google Scholar
Sanders, D.: Development of gas sensors based on indium oxide using high-throughput impedance spectroscopy (Entwicklung von Gassensoren auf Indiumoxid-Basis mittels Hochdurchsatz-Impedanzspektroskopie). Ph.D. Thesis, RWTH Aachen University, 2004 [in German].Google Scholar
Sanders, D. and Simon, U.: High-throughput gas sensing screening of surface doped In2O3. J. Comb. Chem. 9, 53 (2007).CrossRefGoogle ScholarPubMed
Siemons, M.: High throughput methods for synthesis and impedance characterization of ABO3 gas sensing materials. Ph.D. Thesis, RWTH Aachen University, 2006.Google Scholar
Siemons, M. and Simon, U.: Preparation and gas sensing properties of nanocrystalline La-doped CoTiO3. Sens. Actuators, B 120(1), 110 (2006).CrossRefGoogle Scholar
Siemons, M., Koplin, T.J., and Simon, U.: Advances in high throughput screening of gas sensing materials. Appl. Surf. Sci. 254(3), 669 (2007).CrossRefGoogle Scholar
Siemons, M. and Simon, U.: High throughput screening of the sensing properties of doped SmFeO3. Solid State Phenom. 128, 225 (2006).CrossRefGoogle Scholar
Bergh, S.H. and Guan, S.: Fluid distribution for chemical processing microsystems. U.S. Patent No. 6890493, 2000.Google Scholar
Frantzen, A., Sanders, D., Scheidtmann, J., Simon, U., and Maier, W.F.: A flexible database for combinatorial and high-throughput materials science. QSAR Comb. Sci. 24(1), 22 (2005).CrossRefGoogle Scholar
Belle, C.J., Bonamin, A., Simon, U., Santoyo-Salazar, J., Pauly, M., Bégin-Colin, S., and Pourroy, G.: Size dependent gas sensing properties of spinel iron oxide nanoparticles. Sens. Actuators, B 160(1), 942 (2011).CrossRefGoogle Scholar
Sanders, D., Siemons, M., Koplin, T.J., and Simon, U.: Development of a high-throughput impedance spectroscopy screening system (HT-IS) for characterization of novel nanoscaled gas sensing materials, in Nanoporous and Nanostructured Materials for Catalysis, Sensor and Gas Separation Applications, edited by Lu, S-W., Hahn, H., Weissmuller, J., and Gole, J.L. (Mater. Res. Soc. Symp. Proc. 876E, Warrendale, PA, 2005); p. R6.1.1.Google Scholar
Koplin, T.J., Siemons, M., Océn-Valéntine, C., Sanders, D., and Simon, U.: Workflow for high-throughput screening of gas sensing materials. Sensors 6, 298 (2006).CrossRefGoogle Scholar
Siemons, M. and Simon, U.: High throughput screening of the propylene and ethanol sensing properties of rare-earth orthoferrites and orthochromites. Sens. Actuators, B 126(1), 181 (2007).CrossRefGoogle Scholar
Heinert, L.: Systematic structure-activity investigations between semiconducting metal oxide sensors and hydrocarbons (Systematische Struktur-Wirkungs-Untersuchungen zwischen halbleitenden Metalloxidsensoren und Kohlenwasserstoffen). Ph.D. Thesis, Justus-Liebig-Universität Giessen, 2000 [in German].Google Scholar
Song, P., Qin, H., Zhang, L., Liu, X., Huang, S., Hu, J., and Jiang, M.: Electrical and CO gas-sensing properties of perovskite-type La0.8Pb0.2Fe0.8Co0.2O3 semiconductive material. Physica B 368(1–4), 204208 (2005).CrossRefGoogle Scholar
Lee, H-J., Song, J-H., Yoon, Y-S., Kim, T-S., Kim, K-J., and Choi, W-K.: Enhancement of CO sensitivity of indium oxide-based semiconductor gas sensor through ultra-thin cobalt adsorption. Sens. Actuators, B 79, 200 (2001).CrossRefGoogle Scholar
Arakawa, T., Kurachi, H., and Shiokawa, J.: Physicochemical properties of rare earth perovskite oxides used as gas sensor material. J. Mater. Sci. 20, 1207 (1985).CrossRefGoogle Scholar
Muster, T.H., Trinichi, A., Markley, T.A., Lau, D., Martin, P., Bradbury, A., Bendavid, A., and Dligatch, S.: A review of high throughput and combinatorial electrochemistry. Electrochim. Acta 56, 9679 (2011).CrossRefGoogle Scholar
Klemm, S.O., Topalov, A.A., Laska, C.A., and Mayrhofer, K.J.J.: Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS. Electrochem. Commun. 13(12), 1533 (2011).CrossRefGoogle Scholar
Klemm, S.O., Schauer, J-C., Schumacher, B., and Hassel, A.W.: High throughput electrochemical screening and dissolution monitoring of Mg-Zn material libraries. Electrochim. Acta 56, 9627 (2011).CrossRefGoogle Scholar
Klemm, S.O., Pust, S.E., Hassel, A.W., Hüpkes, J., and Mayrhofer, K.J.J.: Electrochemical texturing of Al-doped ZnO thin films for photovoltaic application. J. Solid State Electrochem. 1, 283 (2012).CrossRefGoogle Scholar
Klemm, S., Fink, N., and Mayrhofer, K.: High-throughput in search of new catalysts (Mit Hochdurchsatz auf der Suche nach neuen Katalysatoren). Nachr. Chem. 60, 535 (2012) [in German].CrossRefGoogle Scholar