Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T07:54:15.507Z Has data issue: false hasContentIssue false

High-temperature properties of titanium-substituted yttrium niobate

Published online by Cambridge University Press:  11 June 2019

Aleksandra Mielewczyk-Gryń*
Affiliation:
Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk 80-233, Poland
Piotr Winiarz
Affiliation:
Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk 80-233, Poland
Sebastian Wachowski
Affiliation:
Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk 80-233, Poland
Maria Gazda
Affiliation:
Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk 80-233, Poland
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The defect fluorite titanium-doped yttrium niobate samples Y3Nb1−xTixO7−δ have been synthesized and investigated by the means of high-temperature X-ray diffraction, dilatometry, and thermogravimetry. Thermal expansion coefficients (TECs) as well as chemical expansion coefficients for material with 5, 10, and 15 mol% of titanium were determined. All investigated samples exhibit chemical contraction caused by Ti doping. The values of TECs obtained by two different methods show similar results, which suggests the isotropy of the polycrystalline ceramic. Thermogravimetric studies have shown that all of the compositions exhibit a mass increase upon being exposed to a humid air atmosphere. The total proton concentration calculated on the basis of these results was in the range of 0.1 mol%. Moreover, titanium content influences chemical expansion coefficient, water uptake, and protonic defects concentration, whereas it does not significantly affect the values of TECs.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Navrotsky, A., Lee, W., Mielewczyk-Gryn, A., Ushakov, S.V., Anderko, A., Wu, H., and Riman, R.E.: Thermodynamics of solid phases containing rare earth oxides. J. Chem. Thermodyn. 88, 126 (2015).10.1016/j.jct.2015.04.008CrossRefGoogle Scholar
Kim, K.Y., Veillere, A., Chung, U-C., Jubera, V., and Heintz, J-M.: Spark plasma sintering and decomposition of the Y3NbO7:Eu phase. J. Mater. Sci. 53, 1731 (2018).10.1007/s10853-017-1655-8CrossRefGoogle Scholar
Walasek, A., Zych, E., Zhang, J., and Wang, S.: Synthesis, morphology and spectroscopy of cubic Y3NbO7:Er. J. Lumin. 127, 523 (2007).10.1016/j.jlumin.2007.02.063CrossRefGoogle Scholar
Norberg, S.T., Ahmed, I., Hull, S., Marrocchelli, D., and Madden, P.A.: Local structure and ionic conductivity in the Zr2Y2O7–Y3NbO7 system. J. Phys.: Condens. Matter 21, 215401 (2009).Google ScholarPubMed
Hinatsu, Y. and Doi, Y.: Studies on phase transition temperature of rare earth niobates Ln3NbO7 (Ln = Pr, Sm, Eu) with orthorhombic fluorite-related structure. Solid State Sci. 68, 19 (2017).CrossRefGoogle Scholar
Lee, J., Yashima, M., and Yoshimura, M.: Ionic conductivity of fluorite-structured solid solution Y0.8Nb0.2O1.7. Solid State Ionics 107, 47 (1998).CrossRefGoogle Scholar
Winiarz, P., Mielewczyk-Gryń, A., Wachowski, S., Jasiński, P., Witkowska, A., and Gazda, M.: Structural and electrical properties of titanium-doped yttrium niobate. J. Alloys Compd. 767, 1186 (2018).10.1016/j.jallcom.2018.07.134CrossRefGoogle Scholar
Chesnaud, A., Braida, M-D., Estradé, S., Peiró, F., Tarancón, A., Morata, A., and Dezanneau, G.: High-temperature anion and proton conduction in RE3NbO7 (RE = La, Gd, Y, Yb, Lu) compounds. J. Eur. Ceram. Soc. (2015).10.1016/j.jeurceramsoc.2015.04.014CrossRefGoogle Scholar
Lõpez-Conesa, L., Rebled, J.M., Chambrier, M.H., Boulahya, K., González-Calbet, J.M., Braida, M.D., Dezanneau, G., Estradé, S., and Peirõ, F.: Local structure of rare earth niobates (RE3NbO7, RE = Y, Er, Yb, Lu) for proton conduction applications. Fuel Cells 13, 29 (2013).CrossRefGoogle Scholar
Irvine, J.T.S., Fagg, D.P., Labrincha, J., and Marques, F.M.B.: Development of novel anodes for solid oxide fuel cells. Catal. Today 38, 467 (1997).CrossRefGoogle Scholar
Lee, J-H., Yashima, M., Kakihana, M., and Yoshimura, M.: Phase diagram and oxygen-ion conductivity in the Y2O3–Nb2O5 system. J. Am. Ceram. Soc. 81, 894 (2005).10.1111/j.1151-2916.1998.tb02424.xCrossRefGoogle Scholar
Chesnaud, A., Braida, M-D., Estradé, S., Peiró, F., Tarancón, A., Morata, A., and Dezanneau, G.: High-temperature anion and proton conduction in RE3NbO7 (RE = La, Gd, Y, Yb, Lu) compounds. J. Eur. Ceram. Soc. 35, 3051 (2015).10.1016/j.jeurceramsoc.2015.04.014CrossRefGoogle Scholar
Mielewczyk-Gryn, A. and Navrotsky, A.: Enthalpies of formation of rare earth niobates, RE3NbO7. Am. Mineral. 100, 1578 (2015).10.2138/am-2015-5210CrossRefGoogle Scholar
Cai, L. and Nino, J.C.: Structure and dielectric properties of Ln3NbO7 (Ln = Nd, Gd, Dy, Er, Yb, and Y). J. Eur. Ceram. Soc. 27, 3971 (2007).10.1016/j.jeurceramsoc.2007.02.077CrossRefGoogle Scholar
Løken, A., Ricote, S., and Wachowski, S.: Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes. Crystals 8, 365 (2018).10.3390/cryst8090365CrossRefGoogle Scholar
Norby, T. and Magrasó, A.: On the development of proton ceramic fuel cells based on Ca-doped LaNbO4 as electrolyte. J. Power Sources 282, 28 (2015).10.1016/j.jpowsour.2015.02.027CrossRefGoogle Scholar
Mielewczyk-Gryn, A., Gdula-Kasica, K., Kusz, B., and Gazda, M.: High temperature monoclinic-to-tetragonal phase transition in magnesium doped lanthanum ortho-niobate. Ceram. Int. 39, 4239 (2013).10.1016/j.ceramint.2012.09.102CrossRefGoogle Scholar
Chen, L., Wu, P., Song, P., and Feng, J.: Potential thermal barrier coating materials: RE3NbO7 (RE = La, Nd, Sm, Eu, Gd, Dy) ceramics. J. Am. Ceram. Soc. 101, 45034508 (2018).CrossRefGoogle Scholar
Lind, C.: Two decades of negative thermal expansion research: Where do we stand? Materials 5, 1125 (2012).CrossRefGoogle ScholarPubMed
Megaw, H.D. and Megaw, H.D.: Crystal structures and thermal expansion. Mater. Res. Bull. 6, 1007 (1971).10.1016/0025-5408(71)90080-8CrossRefGoogle Scholar
Chen, L., Hu, M., Wu, F., Song, P., and Feng, J.: Thermo-mechanical properties of fluorite Yb3TaO7 and Yb3NbO7 ceramics with glass-like thermal conductivity. J. Alloys Compd. 788, 1231 (2019).10.1016/j.jallcom.2019.02.317CrossRefGoogle Scholar
Frade, J.R.: Challenges imposed by thermochemical expansion of solid state electrochemical materials. Green Energy Technol. 55, 95 (2013).10.1007/978-1-4471-4456-4_5CrossRefGoogle Scholar
Kobayashi, H., Ogino, H., Mori, T., Yamamura, H., and Mitamura, T.: Preparation of Y3NbO7 powders with excess conductivity of the sintered oxygen bodies. J. Ceram. Soc. Jpn. 101, 671 (1993).10.2109/jcersj.101.671CrossRefGoogle Scholar
Marrocchelli, D., Perry, N.H., and Bishop, S.R.: Understanding chemical expansion in perovskite-structured oxides. Phys. Chem. Chem. Phys. 17, 10028 (2015).CrossRefGoogle ScholarPubMed
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallogr. 32 (1976).10.1107/S0567739476001551CrossRefGoogle Scholar
Jedvik, E., Lindman, A., Benediktsson, M.Þ., and Wahnström, G.: Size and shape of oxygen vacancies and protons in acceptor-doped barium zirconate. Solid State Ionics 275, 2 (2015).10.1016/j.ssi.2015.02.017CrossRefGoogle Scholar
Mielewczyk-Gryń, A., Wachowski, S., Prześniak-Welenc, M., Dzierzgowski, K., Regoutz, A., Payne, D.J., and Gazda, M.: Water uptake analysis of the acceptor-doped lanthanum orthoniobates. J. Therm. Anal. Calorim. 6, (2019). https://doi.org/10.1007/s10973-019-08208-6.Google Scholar
Rodríguez-Carvajal, J.: Recent Developments of the Program FULLPROF. In Commission on Powder Diffraction (IUCr)Google Scholar