Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T09:37:17.319Z Has data issue: false hasContentIssue false

High-temperature heat treatment of carbon microcoils obtained by chemical vapor deposition process and their properties

Published online by Cambridge University Press:  31 January 2011

Xiuqin Chen
Affiliation:
Faculty of Engineering, Gifu University, Gifu 501–1193, Japan
Wan In-Hwang
Affiliation:
Faculty of Engineering, Gifu University, Gifu 501–1193, Japan
Shiro Shimada
Affiliation:
School of Engineering, Hokkaido University, Sapporo 060–0813, Japan
Mituhiro Fujii
Affiliation:
Faculty of Engineering, Nagasaki Institute of Applied Science, Nagasaki 851–0123, Japan
Hiroshi Iwanaga
Affiliation:
Faculty of Engineering, Nagasaki University, Nagasaki 852–8521, Japan
Seiji Motojima*
Affiliation:
Faculty of Engineering, Gifu University, Gifu 501–1193, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Carbon microcoils obtained by the catalytic pyrolysis of acetylene at 770 °C were heat treated at 3000 °C for 6 h in a CO + CO2 atmosphere. The effect of the heat treatment on the morphology, microstructure, and properties was examined. The coiling morphology of the carbon coils was almost preserved even after the heat treatment, though it became brittle. The ruptured cross section of the two fibers, which form the coils, generally has either a trigonal pyramidlike form or negative pyramidal hollow. These characteristic ruptured patterns demonstrate the growth mechanism of the carbon coils. Distinct graphite layers (d = 0.339 nm) were developed by the heat treatment with an inclination of 10–40° versus the fiber axis to form a “herringbone” structure. The bulk electrical resistivity, density, and specific surface area were 10–0.1 Ωcm, 2.2077–2.087 g/cm3, and 6–8 m2/g, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Davis, W.R., Slawson, R.J., and Rigby, G.R., Nature (London) 171, 576 (1953).CrossRefGoogle Scholar
2.Calszka, J. and Back, M.H., Carbon 22, 141 (1984).Google Scholar
3.Audier, M. and Coulon, M., Carbon 23, 317 (1985).CrossRefGoogle Scholar
4.Okada, Y., Takeuchi, K., Yamanashi, H., and Ushijima, H., J. Mater. Sci. Lett. 11, 1715 (1992).CrossRefGoogle Scholar
5.Rodoriguez, N.M., J. Mater. Res. 8, 3233 (1993).CrossRefGoogle Scholar
6.Addamiano, A., J. Cryst. Growth 58, 617 (1982).CrossRefGoogle Scholar
7.Kang, T-K., Park, S-D., Rhee, C-K., and Kuk, I.I-H.K, in Proceedings of the 6th Japan-Korea Ceramic Seminar (Kobe, Japan, 1989), p. 249.Google Scholar
8.Motojima, S., Hamamoto, T., and Iwanaga, H., J. Cryst. Growth 158, 79 (1996).CrossRefGoogle Scholar
9.Motojima, S., Ueno, S., Hattori, T., and Goto, K., Appl. Phys. Lett. 54, 1001 (1989).CrossRefGoogle Scholar
10.Motojima, S., Ueno, S., Hattori, T., and Iwanaga, H., J. Cryst. Growth 96, 383 (1989).CrossRefGoogle Scholar
11.Vogt, U., Hofmann, H. and Kramer, V., Key Eng. Mater. 89–91, 29 (1994).Google Scholar
12.Motojima, S., Yamana, T., Araki, T., and Iwanaga, H., J. Electro-chem. Soc. 142, 3141 (1995).CrossRefGoogle Scholar
13.Gleize, P., Schouler, M.C., Gadelle, P., and Caillet, M., J. Mater. Sci. 29, 1575 (1994).CrossRefGoogle Scholar
14.Johansson, S., Schweitz, J-A., Westberg, H., and Boman, M., J. Appl. Phys. 72, 5956 (1992).CrossRefGoogle Scholar
15.Hernadi, K., Fonseca, A., Nagy, J.B., Bernaerts, D., and Luca, A.A., Carbon 34, 1249 (1996).CrossRefGoogle Scholar
16.Li, W., Xiw, S., Liu, W., Zhao, R., Zhang, Y., and Qian, L., J. Mater. Sci. 34, 2745 (1999).CrossRefGoogle Scholar
17.Liu, M. and Cowley, J.M., Carbon 32, 393 (1994).CrossRefGoogle Scholar
18.Khara, S. and Itoh, S., Carbon 33, 931 (1995).Google Scholar
19.Motojima, S., Kawaguchi, M., Nozaki, K., and Iwanaga, H., Appl. Phys. Lett. 56, 321 (1990).CrossRefGoogle Scholar
20.Motojima, S., Hirata, M., and Iwanaga, H., J. Chem. Vapor Deposition 3, 87 (1994).Google Scholar
21.Motojima, S., Itoh, Y., Asakura, S., and Iwanaga, H., J. Mater. Sci. 30, 5049 (1995).CrossRefGoogle Scholar
22.Motojima, S., Asakura, S., Hirata, M., and Iwanaga, H., Mater. Sci. Eng. B34, L9 (1995).CrossRefGoogle Scholar
23.Motojima, S., Asakura, S., Kasemura, T., Takeuchi, S., and Iwa-naga, H., Carbon 34, 289 (1996).CrossRefGoogle Scholar
24.Motojima, S., Hamamoto, T., Ueshima, N., Kojima, Y., and Iwanaga, H., Electrochem. Soc. Proceedings 97–25, 433 (1997).Google Scholar
25.Motojima, S., Kojima, Y., Hamamoto, T., Ueshima, N., and Iwanaga, H., Electrochem. Soc. Proc. 97–39, 595 (1997).Google Scholar
26.Motojima, S., Chen, X., Kuzuya, T., Hwang, W-I., Fujii, M., and Iwanaga, H., J. Phys. IV (France) 9, Pr8445 (1999).Google Scholar
27.Chen, X. and Motojima, S., J. Mater. Sci. 34, 3581 (1999).CrossRefGoogle Scholar
28.Motojima, S. and Chen, Q.. J. Appl. Phys. 87, 3919 (1999).CrossRefGoogle Scholar
29.Chambers, A., Park, C., Terry, R., Baker, K., and Rodriguez, N.M., J. Phys. Lev. 102, 4253 (1998).Google Scholar
30.Bacon, R.J., J. Appl. Phys. 21, 283 (1960).CrossRefGoogle Scholar
31.Audier, M. and Coulon, M., Carbon 23, 317 (1985).CrossRefGoogle Scholar
32.Amelinckx, S., Zhang, X.B., Bernaerts, D., Zhang, X.F., Ivanov, V., and Nagy, J.B., Nature 265, 635 (1994).Google Scholar
33.Kawaguchi, M., Nozaki, K., Motojima, S., and Iwanaga, H., J. Cryst. Growth 118, 309 (1992).CrossRefGoogle Scholar