Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-19T09:46:57.941Z Has data issue: false hasContentIssue false

Highly reliable silicon carbide photodiodes for visible-blind ultraviolet detector applications

Published online by Cambridge University Press:  09 July 2012

Deepak Prasai
Affiliation:
Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, 12489 Berlin, Germany
Wilfred John
Affiliation:
Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, 12489 Berlin, Germany
Leonhard Weixelbaum
Affiliation:
Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, 12489 Berlin, Germany
Olaf Krüger*
Affiliation:
Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, 12489 Berlin, Germany
Günter Wagner
Affiliation:
Leibniz-Institut für Kristallzüchtung, 12489 Berlin, Germany
Peter Sperfeld
Affiliation:
Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, 4.1 Photometry and Applied Radiometry, 38116 Braunschweig, Germany
Stefan Nowy
Affiliation:
Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, 4.1 Photometry and Applied Radiometry, 38116 Braunschweig, Germany
Dirk Friedrich
Affiliation:
Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, 4.1 Photometry and Applied Radiometry, 38116 Braunschweig, Germany
Stefan Winter
Affiliation:
Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, 4.1 Photometry and Applied Radiometry, 38116 Braunschweig, Germany
Tilman Weiss
Affiliation:
sglux GmbH, 12489 Berlin, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Highly efficient polytype 4H silicon carbide (4H-SiC) p–n diodes for ultraviolet (UV) light detection have been fabricated, characterized, and exposed to high-intensity mercury lamp irradiation (up to 17 mW/cm2). The behavior of the photocurrent response under UV light irradiation using a low-pressure mercury UV-C lamp (4 mW/cm²) and a medium-pressure mercury discharge lamp (17 mW/cm²) has been studied. We report on long-term UV photoaging tests performed for up to 22 mo. Results demonstrate the robustness of SiC photodiodes against UV radiation. The devices under test showed an initial burn-in effect, i.e., the photocurrent response dropped by less than 5% within the first 40 h of artificial UV aging. Such burn-in effect under UV stress was also observed for previously available polytype 6H silicon carbide (6H–SiC) p–n photodetectors. After burn-in, no measurable degradation has been detected, which makes the devices excellent candidates for high irradiance UV detector applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Monroy, E., Omnes, F., and Calle, F.: Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 18(4), R33R51 (2003).Google Scholar
Razeghi, M. and Rogalski, A.: Semiconductor ultraviolet detectors. J. Appl. Phys. 79(10), 7433 (1996).Google Scholar
Scholze, F., Klein, R., and Bock, T.: Irradiation stability of silicon photodiodes for extreme-ultraviolet radiation. Appl. Opt. 42(28), 5621 (2003).Google Scholar
Werner, L.: Ultraviolet stability of silicon photodiodes. Metrologia 35(4), 407 (1998).Google Scholar
5.Brown, D.M., Downey, E.T., Ghezzo, M., Kretchmer, J.W., Saia, R.J., Liu, Y.S., Edmond, J.A., Gati, G., Pimbley, J.M., and Schneider, W.E.: Silicon carbide UV photodiodes. IEEE Trans. Electron Devices 40(2), 325 (1993).Google Scholar
Edmond, J., Kong, H., Suvorov, A., Waltz, D., and Carter, C.: 6H-Silicon carbide light emitting diodes and UV photodiodes. Phys. Status Solidi A 162(1), 481 (1997).Google Scholar
Metzger, S., Henschel, H., Köhn, O., and Lennartz, W.: Silicon carbide radiation detector for harsh environments. IEEE Trans. Nucl. Sci. 49(3), 1351 (2002).Google Scholar
Holz, M., Hultsch, G., Scherg, T., and Rupp, R.: Reliability considerations for recent Infineon SiC diode releases. Microelectron. Reliab. 47(9–11), 1741 (2007).Google Scholar
Borysiewicz, M.A., Kaminska, E., Mysliwiec, M., Wzorek, M., Kuchuk, A., Barcz, A., Dynowska, E., di Forte-Poisson, M.A., Giesen, C., and Piotrowska, A.: Fundamentals and practice of metal contacts to wide band gap semiconductor devices. Cryst. Res. Technol. 47(3), 261 (2012).Google Scholar
Downey, B.P., Mohney, S.E., Clark, T.E., and Flemish, J.R.: Reliability of aluminum-bearing ohmic contacts to SiC under high current density. Microelectron. Reliab. 50(12), 1967 (2010).Google Scholar
Downey, B.P., Flemish, J.R., Liu, B.Z., Clark, T.E., and Mohney, S.E.: Current-induced degradation of nickel ohmic contacts to SiC. J. Electron. Mater. 38(4), 563 (2009).Google Scholar
Cavallini, A., Castaldini, A., and Nava, F.: On the UV responsivity of neutron-irradiated 4H-SiC. Appl. Phys. Lett. 93(15), 153502 (2008).Google Scholar
Nava, F., Vittone, E., Vanni, P., Verzellesi, G., Fuochi, P.G., Lanzieri, C., and Glaser, M.: Radiation tolerance of epitaxial silicon carbide detectors for electrons, protons and gamma-rays. Nucl. Instrum. Methods Phys. Res., Sect. A 505(3), 645 (2003).Google Scholar
Sciuto, A., Roccaforte, F., and Raineri, V.: Electro-optical response of ion-irradiated 4H-SiC Schottky ultraviolet photodetectors. Appl. Phys. Lett. 92(9), 093505 (2008).Google Scholar
Zhang, L., Zhang, Y.M., Zhang, Y.M., Han, C., and Ma, Y.J.: High energy electron radiation effect on Ni/4H-SiC SBD and Ohmic contact. Chin. Phys. B 18(8), 3490 (2009).Google Scholar
Moscatelli, F.: Silicon carbide for UV, alpha, beta and x-ray detectors: Results and perspectives. Nucl. Instrum. Methods Phys. Res., Sect. A 583(1), 157 (2007).Google Scholar
Sciuto, A., Mazzillo, M., Raineri, V., Catania, G., D’Arrigo, G., and Roccaforte, F.: On the aging effects of 4H-SiC Schottky photodiodes under high intensity mercury lamp irradiation. IEEE Photonics Technol. Lett. 22(11), 775 (2010).Google Scholar
Goldberg, Y., Levinshtein, M.E., and Rumyantsev, S.L.: Silicon Carbide (SiC), in Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe, edited by Levinshtein, M.E., Rumyantsev, S.L., and Shur, M.S. (John Wiley & Sons, Inc., New York, 2001), p. 93.Google Scholar
Park, K.S., Kimoto, T., and Matsunami, H.: High quantum-efficiency 4H-SiC UV photodiode. J. Korean Phys. Soc. 30(1), 123 (1997).Google Scholar
Wagner, G., Schulz, D., and Siche, D.: Vapor phase growth of epitaxial silicon carbide layers. Prog. Cryst. Growth Charact. Mater. 47(2–3), 139 (2003).CrossRefGoogle Scholar
Crofton, J., Porter, L.M., and Williams, J.R.: The physics of ohmic contacts to SiC. Phys. Status Solidi B 202(1), 581 (1997).Google Scholar
Ohno, T.: Recent progress in SiC-based device processing. Electron. Commun. Jpn. Part II 82(2), 48 (1999).Google Scholar
Nowy, S., Barton, B., Pape, S., Sperfeld, P., Friedrich, D., Winter, S., Hopfenmüller, G., and Weiss, T.: Characterization of SiC photodiodes for high irradiance UV radiometers, in Proceedings of NEWRAD2011, edited by Park, S. and Ikonen., E. (Aalto University, Espoo, Finland, 2011) p. 203. http://newrad2011.org/NewRAD2011_AbstractCollection_20110704.pdf, see also:http://www.boselec.com/products/documents/CharacterizationofSiCphotodiodesforhighirradianceUVradiometersPTB2011_POSTER.pdf.Google Scholar