Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T18:23:19.609Z Has data issue: false hasContentIssue false

High-energy grinding of FeMo powders

Published online by Cambridge University Press:  31 January 2011

M. D’Incau
Affiliation:
Department of Materials Engineering and Industrial Technologies, University of Trento, 38100 Trento, Italy
M. Leoni
Affiliation:
Department of Materials Engineering and Industrial Technologies, University of Trento, 38100 Trento, Italy
P. Scardi*
Affiliation:
Department of Materials Engineering and Industrial Technologies, University of Trento, 38100 Trento, Italy
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Iron-molybdenum powders ground in a planetary ball mill under different operating conditions were studied by x-ray diffraction line profile analysis using a recently developed whole powder pattern modeling approach. The evolution of the microstructure, expressed in terms of size distribution of coherent scattering domains, average dislocation density, and edge/screw character, shows the importance of the main process parameters: the ratio between jar and main disk rotation speeds, and ball milling time. A characteristic three-stage process is observed, with work hardening followed by particle flattening/bending before nanocrystalline grains form by a fragmentation process triggered by localized deformation. The relationship between lattice defect density and domain size suggests a progressive transition between statistically stored to geometrically necessary dislocations, with the latter mostly present as excess dislocations at the nanodomain boundary.

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hirsch, P., Howie, A., Nicholson, R.B., Pashley, D.W.Whelan, M.J.: Electron Microscopy of Thin Crystals Krieger Publishing Co. Huntington, NY 1977 5065Google Scholar
2Krill, C.E.Birringer, R.: Estimating grain-size distributions in nanocrystalline materials from x-ray diffraction profile analysis. Philos. Mag. A 77, 621 1998CrossRefGoogle Scholar
3Horita, Z., Smith, D.J., Furukawa, M., Nemoto, M., Valiev, R.Z.Langdon, T.G.: An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J. Mater. Res. 11, 1880 1996CrossRefGoogle Scholar
4Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 2001CrossRefGoogle Scholar
5Koch, C.C.: The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review. Nanostruct. Mater. 2, 109 1993CrossRefGoogle Scholar
6Snyder, R.L., Fiala, J.Bunge, H.J.: Defect and Microstructure Analysis by Diffraction, IUCr series (Oxford University Press, New York, 1999)Google Scholar
7Mittemeijer, E.J.Scardi, P.: Diffraction Analysis of the Microstructure of Materials,Springer Series in Materials Science, Vol. 68 (Springer-Verlag, Berlin, 2004)CrossRefGoogle Scholar
8Klug, H.P.Alexander, L.E.: X-Ray Diffraction Procedures, 2nd ed (John Wiley and Sons, New York, 1974)Google Scholar
9Scardi, P., Leoni, M.Delhez, R.: Line broadening analysis using integral breadth methods: A critical review. J. Appl. Crystallogr. 37, 381 2004CrossRefGoogle Scholar
10Suryanarayana, C.Koch, C.C.: Nanocrystalline materials: Current research and future directions. Hyperfine Interact. 130, 5 2000CrossRefGoogle Scholar
11Langford, J.I.Wilson, A.J.C.: Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102 1978CrossRefGoogle Scholar
12Scardi, P.Leoni, M.: Diffraction line profiles from polydisperse crystalline systems. Acta Crystallogr., Sect. A 57, 604 2001CrossRefGoogle ScholarPubMed
13Koch, C.C.: Synthesis of nanostructured materials by mechanical milling: Problems and opportunities. Nanostruct. Mater. 9, 13 1997CrossRefGoogle Scholar
14Koch, C.C.: Top-down synthesis of nanostructured materials: Mechanical and thermal processing methods. Rev. Adv. Mater. Sci. 5, 91 2003Google Scholar
15Fecht, H-J.: Nanostructure formation by mechanical attrition. Nanostruct. Mater. 6, 33 1995CrossRefGoogle Scholar
16Börner, I.Eckert, J.: Nanostructure formation and steady-state grain size of ball-milled iron powders. Mater. Sci. Eng., A 226–228, 541 1997CrossRefGoogle Scholar
17Jiang, H.G., Rühle, M.Lavernia, E.J.: On the applicability of the x-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials. J. Mater. Res. 14, 549 1999CrossRefGoogle Scholar
18Yin, J., Umemoto, M., Liu, Z.G.Tsuchiya, K.: Formation mechanism and annealing behavior of nanocrystalline ferrite in pure Fe fabricated by ball milling. ISIJ Int. 41, 1389 2001CrossRefGoogle Scholar
19Xu, Y., Liu, Z.G., Umemoto, M.Tsuchiya, K.: Formation and annealing behavior of nanocrystalline ferrite in Fe-0.89C spheroidite steel produced by ball milling. Metall. Mat. Trans. A. 33, 2195 2002CrossRefGoogle Scholar
20Vives, S., Gaffet, E.Meunier, C.: X-ray diffraction line profile analysis of iron ball milled powders. Mater. Sci. Eng., A 366, 229 2004CrossRefGoogle Scholar
21Umemoto, M., Todaka, Y., Li, J.Tsuchiya, K.: Nanocrystalline structure in steels produced by various severe plastic deformation processes. Mat. Sci. Forum 503–504, 11 2006CrossRefGoogle Scholar
22Li, J.G., Umemoto, M., Todaka, Y.Tsuchiya, K.: Role of strain gradient on the formation of nanocrystalline structure produced by severe plastic deformation. J. Alloys Compounds 290, 434 2007Google Scholar
23Lesuer, D.R., Syna, C.K.Sherby, O.D.: Nano-subgrain strengthening in ball-milled iron. Mater. Sci. Eng., A 2007CrossRefGoogle Scholar
24Jang, J.S.C.Koch, C.C.: The Hall-Petch relationship in nanocrystalline iron produced by ball milling. Scripta Metall. Mater. 24, 1599 1990CrossRefGoogle Scholar
25Scardi, P.Leoni, M.: Whole powder pattern modelling. Acta Crystallogr., Sect. A 58, 190 2002CrossRefGoogle ScholarPubMed
26Scardi, P.Leoni, M.Whole powder pattern modeling, in Theory and Application in Diffraction Analysis of the Microstructure of Materials,edited by E.J. Mittemeijer and P. Scardi (Springer-Verlag, Berlin, 2004), p. 51CrossRefGoogle Scholar
27Cline, J., Deslattes, R.D., Staudenmann, J-L., Kessler, E.G., Hudson, L.T., Henins, A.Cheary, R.W.: Certificate SRM 660a. NIST, Gaithersburg, MD (2000)Google Scholar
28Caglioti, G., Paoletti, A.Ricci, F.P.: Choice of collimator for a crystal spectrometer for neutron diffraction. Nucl. Instrum. Methods 3, 223 1958CrossRefGoogle Scholar
29Leoni, M., Confente, T.Scardi, P.: PM2K: A flexible program implementing whole powder pattern modeling. Z. Kristallogr.(Suppl. 23), 249 2006CrossRefGoogle Scholar
30Leoni, M.Scardi, P.: Nanocrystalline domain size distributions from powder diffraction data. J. Appl. Crystallogr. 37, 629 2004CrossRefGoogle Scholar
31Scardi, P.Leoni, M.: Diffraction whole-pattern modeling study of anti-phase domains in Cu3Au. Acta Mater. 53, 5229 2005CrossRefGoogle Scholar
32Scardi, P.Leoni, M.: Line profile analysis: Pattern modeling versus profile fitting. J. Appl. Crystallogr. 39, 24 2006CrossRefGoogle Scholar
33Valiev, R.Z., Islamgaliev, R.K.Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 2000CrossRefGoogle Scholar
34Langford, J.I., Louër, D.Scardi, P.: Effect of a crystallite size distribution on x-ray diffraction line profiles and whole-powder-pattern fitting. J. Appl. Crystallogr. 33, 964 2000CrossRefGoogle Scholar
35Wilkens, M.: The determination of the density and distribution of dislocations in deformed single crystals from broadened x-ray diffraction profiles. Phys. Stat. Sol. 2, 359 1970. aCrossRefGoogle Scholar
36Wilkens, M.Theoretical aspects of kinematical x-ray diffraction profiles from crystals containing dislocation distributions, inFundamental Aspects of Dislocation Theory,edited by J.A. Simmons, R. de Wit, and R. Bullough (U.S. Special Publication No. 317, Washington, DC 1970), Vol. II. Nat. Bur. Stand., 11951221Google Scholar
37Krivoglaz, M.A.: X-Ray and Neutron Diffraction in Nonideal Crystals, (Springer-Verlag, Berlin, 1996)CrossRefGoogle Scholar
38Klimanek, P., Kuzel, R.Jr., : X-ray diffraction line broadening due to dislocations in non-cubic materials. I. General considerations and the case of elastic isotropy applied to hexagonal crystals. J. Appl. Crystallogr. 21, 59 1988CrossRefGoogle Scholar
39Kuzel, R. Jr., Klimanek, P.: X-ray diffraction line broadening due to dislocations in non-cubic materials. II. The case of elastic anisotropy applied to hexagonal crystals. J. Appl. Crystallogr. 22, 363 1988CrossRefGoogle Scholar
40Ungár, T., Dragomir, I., Révész, Á.Borbély, A.: The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 32, 992 1999CrossRefGoogle Scholar
41Cheary, R.W., Dooryhee, E., Lynch, P., Armstrong, N.Dligatch, S.: X-ray diffraction line broadening from thermally deposited gold films. J. Appl. Crystallogr. 33, 1271 2000CrossRefGoogle Scholar
42Mio, H., Kano, J., Saito, F.Kaneko, K.: Effects of rotational direction and rotation-to-revolution speed ratio in planetary ball milling. Mater. Sci. Eng., A 332, 75 2002CrossRefGoogle Scholar
43Mio, H., Kano, J., Saito, F.Kaneko, K.: Optimum revolution and rotational directions and their speeds in planetary ball milling. Int. J. Miner. Process. 74S, S85 2004CrossRefGoogle Scholar
44Young, R.A.: The Rietveld Method Oxford University Press Oxford, UK 1993CrossRefGoogle Scholar
45Ashby, M.F.: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399 1970CrossRefGoogle Scholar
46Hughes, D.A., Hansen, N.Bammann, D.J.: Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scripta Mater. 48, 147 2003CrossRefGoogle Scholar
47Zbib, H.M.Aifantis, E.C.: Size effects and length scales in gradient plasticity and dislocation dynamics. Scripta Mater. 48, 155 2003CrossRefGoogle Scholar
48Williamson, G.K.Smallman, R.E.: Dislocation densities in some annealed and cold-worked metals from measurements on the x-ray Debye-Scherrer spectrum. Philos. Mag. 1, 34 1956CrossRefGoogle Scholar