Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T03:44:16.277Z Has data issue: false hasContentIssue false

High-density aligned carbon nanotubes with uniform diameters

Published online by Cambridge University Press:  31 January 2011

P. J. Cao
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Y. S. Gu
Affiliation:
Department of Materials Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
H. W. Liu
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
F. Shen
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Y. G. Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Q. F. Zhang
Affiliation:
Department of Electronics, Peking University, Beijing 100871, People's Republic of China
J. L. Wu
Affiliation:
Department of Electronics, Peking University, Beijing 100871, People's Republic of China
H. J. Gao
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Get access

Abstract

A new method was found to synthesize large-area (7 × 15 mm2), high-density (higher than 109 cm−2), aligned carbon nanotubes (CNTs) with uniform diameters on a silica wafer. Ferrocene/melamine mixtures were pyrolyzed through a three-step process in an Ar atmosphere in a single-stage furnace. The structure and composition of the CNTs were investigated by scanning electron microscopy, transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and electron energy-loss spectroscopy (EELS). It was found that these nanotubes have uniform outer diameters of about 22 nm and varying lengths from 10 to 40 μm. High-resolution TEM images showed that CNT is composed of graphite-like layers arranged in a stacked-cup-like structure. XPS results showed that the layer covering the tops of the aligned CNTs consists of carbon and iron. The EELS spectrum showed that these tubes are pure carbon.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., Nature 354, 56 (1991).Google Scholar
2.De Heer, W.A., Chatelain, A., and Ugarte, D., Science 270, 1179 (1995).Google Scholar
3.Fan, S.S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., and Dai, H.J., Science 283, 512 (1999).Google Scholar
4.Collins, P.G., Zettl, A., Bando, H., Thess, A., and Smalley, R.E., Science 278, 100 (1997).CrossRefGoogle Scholar
5.Frank, S., Poncharal, P., Wang, Z.L., and Heer, W.A. De, Science 280, 1744 (1998).CrossRefGoogle Scholar
6.Tans, S.J., Verschueren, A.R.M., and Dekker, C., Nature 393, 49 (1998).CrossRefGoogle Scholar
7.White, C. and Todorov, T.N., Nature 393, 240 (1998).Google Scholar
8.Menon, M. and Srivastava, D., Phys. Rev. Lett. 79, 443 (1997).Google Scholar
9.Baughman, R.H., Cui, C.X., Zakhidov, A.A., Lqval, Z., Barisci, J.N., Spinks, B.M., Wallace, B.G., Mazzoldi, A., Rossi, D. De, Rinzlet, A.G., Jaschinski, O., Roth, S., and Kertesz, M., Science 284, 1340 (1999).CrossRefGoogle Scholar
10.Che, G.L., Lakschmi, B.B., Fisher, E.R., and Martin, C.R., Nature 393, 346 (1998).CrossRefGoogle Scholar
11.Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.I., and Lieber, C.M., Nature 394, 52 (1998).Google Scholar
12.Wong, S.S., Woolley, A.T., Joselevich, E., Cheung, C., and Lieber, C.M., J. Am. Chem. Soc. 120, 8557 (1998).CrossRefGoogle Scholar
13.Dresselhaus, M.S., Nature 358, 195 (1992).Google Scholar
14.Wei, B.Q., Vajtai, R., Jung, Y., Ward, J., Zhang, R., Ramanath, G., and Ajayan, P.M., Nature 416, 495 (2002).Google Scholar
15.Han, W.Q., Redlich, P.K., Seeger, T., Ernst, F., Rühle, M., Terrones, M., and Terrones, H., Appl. Phys. Lett. 77, 1807 (2000).Google Scholar
16.Ren, Z.F., Huang, Z.P., Wang, D.Z., Wen, J.G., Xu, J.W., Wang, J.H., Calvet, L.E., Chen, J., Klemic, J.F., and Reed, M.A., Appl. Phys. Lett. 75, 1086 (1999).Google Scholar
17.Iijima, S., Ichihashi, T., and Ando, Y., Nature 356, 776 (1992).Google Scholar
18.Terrones, M., Terrones, H., Grobert, N., Hsu, W.K., Walton, D.R.M., Rühle, M., and Cheetham, A.K., Appl. Phys. Lett. 75, 3932 (1999).CrossRefGoogle Scholar
19.Endo, E., Kim, Y.A., Hayashi, T., Fukai, Y., Oshida, K., Terrones, M., Yanagisawa, T., Higaki, S., and Dresselhaus, M.S., Appl. Phys. Lett. 80, 1267 (2002).Google Scholar
20.Zhong, D.Y., Liu, S., Zhang, G.Y., and Wang, E.G., J. Appl. Phys. 89, 5939 (2001).Google Scholar
21.Hellgren, N., Johansson, M.P., Broitman, E., Hultman, L., and Sundgren, J.E., Phys. Rev. B 59, 5162 (1999).Google Scholar
22.Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G., Science 274, 1701 (1996).CrossRefGoogle Scholar
23.Terrones, M., Grobert, N., Olivares, J., Zhang, J.P., Terrones, H., Kordatos, K., Hsu, W.K., Hare, J.P., Townsend, P.D., Prassides, K., Cheetham, A.K., Kroto, H.W., and Walton, D.R.M., Nature 388, 52 (1997).Google Scholar