Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-30T20:12:07.980Z Has data issue: false hasContentIssue false

High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies

Published online by Cambridge University Press:  23 January 2013

Carl C. Koch*
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, North Carolina 27695
Ronald O. Scattergood
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, North Carolina 27695
Mostafa Saber
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, North Carolina 27695
Hasan Kotan
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, North Carolina 27695
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Data from the literature and our laboratory have been reviewed regarding the maximum homologous temperatures that can be attained by the addition of solute elements that may induce thermodynamic or kinetic (Zener pinning) stabilization of a nanocrystalline grain size (<100 nm) to elevated temperatures. The results of this review suggest that kinetic stabilization by Zener pinning by nanoscale second phases may be the more effective strategy for keeping a nanoscale grain microstructure at the highest homologous temperatures. More research is necessary to confirm this suggestion and to determine the influence of nanoscale grain boundary second phases on the mechanical behavior of the nanocrystalline matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Suryanarayana, C.: Nanocrystalline materials. Int. Mater. Rev. 40, 41 (1995).CrossRefGoogle Scholar
Weissmuller, J.: Nanocrystalline materials – an overview, in Synthesis and Processing of Nanocrystalline Powder, edited by Bourell, DL. (TMS, Warrendale, PA, 1996); p. 3.Google Scholar
Malow, T.R. and Koch, C.C.: Grain growth of nanocrystalline materials – a review, in Synthesis and Processing of Nanocrystalline Powder, edited by Bourell, D.L. (TMS, Warrendale, PA, 1996); p. 33.Google Scholar
Hofler, H.J. and Averback, R.S.: Grain growth in nanocrystalline TiO2 and its relation to Vickers hardness and fracture toughness. Scr. Metall. Mater. 24, 2401 (1990).CrossRefGoogle Scholar
Boylan, K., Osstrander, D., Erb, U., Palumbo, G., and Aust, K.T.: An in situ study of the thermal stability of nanocrystalline Ni-P. Scr. Metall. Mater. 25, 2711 (1991).CrossRefGoogle Scholar
Michels, A., Krill, C.E., Ehrhardt, H., Birringer, R., and Wu, D.T.: Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater. 47, 2143 (1999).CrossRefGoogle Scholar
Bansal, C., Gao, Z., and Fultz, B.: Grain growth and chemical ordering in (Fe, Mn)3Si. NanoStruct. Mater. 4, 939 (1994).Google Scholar
Krill, C.E., Helfen, L., Michels, D., Natter, H., Fitch, A., Masson, O., and Birringer, R.: Size-dependent grain-growth kinetics observed in nanocrystalline Fe. Phys. Rev. Lett. 86, 842 (2001).CrossRefGoogle ScholarPubMed
Weissmuller, J.: Alloy effects nanostructures. NanoStruct. Mater. 3, 261 (1993).CrossRefGoogle Scholar
Weissmuller, J.: Alloy thermodynamics in nanostructures. J. Mater. Res. 9, 4 (1994).CrossRefGoogle Scholar
Kirchheim, R.: Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413 (2002).CrossRefGoogle Scholar
Liu, F. and Kirchheim, R.: Grain boundary saturation and grain growth Scr. Mater. 51, 521 (2004).CrossRefGoogle Scholar
Millett, P.C., Selvam, R.P., and Saxena, A.: Stabilizing nanocrystalline materials with dopants. Acta Mater. 55, 2329 (2007).CrossRefGoogle Scholar
Trelewicz, J.R. and Schuh, C.A.: Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B 79, 094112 (2009).CrossRefGoogle Scholar
Chookajorn, T., Murdoch, H.A., and Schuh, C.A.: Design of stable nanocrystalline alloys. Science 337, 951 (2012).CrossRefGoogle ScholarPubMed
VanLeeuwen, B.K., Darling, K.A., Liu, Z-K., Koch, C.C., and Scattergood, R.O.: A practical approach to calculating the reduction in grain boundary energy due to solute segregation in nanocrystalline alloys. (2012, submitted).Google Scholar
Saber, M., Kotan, H., Koch, C.C., and Scattergood, R.O.: A predictive model for thermodynamic stabilization of grain size. (2012, submitted).CrossRefGoogle Scholar
Krill, C.E., Ehrhardt, H., and Birringer, R.: Thermodynamic stabilization of nanocrystallinity. Z. MetaIllkd. 96, 1134 (2005).CrossRefGoogle Scholar
Murr, L.E.: Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading, MA, 1975); pp. 130133.Google Scholar
Krill, C.E., Klein, R., Janes, S., and Birringer, R.: Thermodynamic stabilization of grain boundaries in nanocrystalline alloys. Mater. Sci. Forum 179181, 443 (1995).CrossRefGoogle Scholar
De Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R., and Niessen, A.K.: Cohesion in Metals; Transition Metal Alloys (North-Holland, Amsterdam, 1988); p. 748.Google Scholar
Okamoto, H.: Phase Diagrams for Binary Alloys (ASM International, Metals Park, OH, 2000); p. 380.Google Scholar
VanLeeuwen, B.K., Darling, K.A., Koch, C.C., Scattergood, R.O., and Butler, B.G.: Thermal stability of nanocrystalline Pd81Zr19. Acta Mater. 58, 4292 (2010).CrossRefGoogle Scholar
Detor, A.J. and Schuh, C.A.: Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55, 371 (2007).CrossRefGoogle Scholar
Detor, A.J. and Schuh, C.A.: Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni–W system. Acta Mater. 55, 4221 (2007).CrossRefGoogle Scholar
Detor, A.J., Miller, M.K., and Schuh, C.A.: Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography. Philos. Mag. 86, 4459 (2006).CrossRefGoogle Scholar
Okamoto, H.: Phase Diagrams for Binary Alloys (ASM International, Metals Park, OH, 2000); p. 626.Google Scholar
Detor, A.J. and Schuh, C.A.: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22, 3233 (2007).CrossRefGoogle Scholar
Farber, B., Cadel, E., Menand, A., Schmitz, G., and Kirchheim, R.: Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe. Acta Mater. 48, 789 (2000).CrossRefGoogle Scholar
Choi, P., da Silva, M., Klement, U., Al-Kassab, T., and Kirchheim, R.: Thermal stability of electrodeposited nanocrystalline Co-1.1 at.% P. Acta Mater. 53, 4473 (2005).CrossRefGoogle Scholar
Darling, K.A., Chan, R.N., Wong, P.Z., Semones, J.E., Scattergood, R.O., and Koch, C.C.: Grain-size stabilization in nanocrystalline FeZr alloys. Scr. Mater. 59, 530 (2008).CrossRefGoogle Scholar
Darling, K.A., VanLeeuwen, B.K., Koch, C.C., and Scattergood, R.O.: Thermal stability of nanocrystalline Fe-Zr alloys. Mater. Sci. Eng., A, 527, 3572 (2010).CrossRefGoogle Scholar
Saber, M., Kotan, H., Koch, C.C., and Scattergood, R.O.: Thermal stability of nanocrystalline Fe-Cr alloys with Zr additions. Mater. Sci.Eng., A, 556, 664 (2012).CrossRefGoogle Scholar
Darling, K.A.: Army research laboratory, Aberdeen proving Ground, MD. Private communication.Google Scholar
Weissmuller, J., Krauss, W., Haubold, T., Birringer, R., and Gleiter, H.: Atomic structure and thermal stability of nanostructured Y-Fe alloys. Nanostruct. Mater. 1, 439 (1992).CrossRefGoogle Scholar
Liu, K.W. and Muchlich, F.: Thermal stability of nano-RuAl produced by mechanical alloying. Acta Mater. 49, 395 (2001)CrossRefGoogle Scholar
Terwilliger, C.D. and Chiang, Y-M.: Size-dependent solute segregation and total solubility in ultrafine polycrystals: Ca in TiO2. Acta Metall. Mater. 43, 319 (1995).CrossRefGoogle Scholar
Humphreys, F.J. and Hatherly, M.: Recrystallization and Related Annealing Phenomena, Chapter 9 (Elsevier Science Inc., Tarrytown, NY, 1996); p. 281.Google Scholar
El-Sherik, A.M., Boylan, D., Erb, U., Palumbo, G., and Aust, K.T.: Grain growth behavior of nanocrystalline nickel. Mater. Res. Soc. Symp. Proc. 238, 727 (1992).CrossRefGoogle Scholar
Perez, R.J., Huang, B., Sharif, A.A., and Lavernia, E.J.: Thermal stability of cryomilled Fe-10 wt% Al, in Synthesis and Processing of Nanocrystalline Powder, edited by Bourell, B.L. (TMS, Warrendale, PA, 1996); p. 273.Google Scholar
Shaw, L., Luo, H., Villegas, J., and Miracle, D.: Thermal stability of nanostructured Al93Fe3Cr2Ti2 alloys prepared via mechanical alloying. Acta Mater. 51, 2647 (2003).CrossRefGoogle Scholar
Morris, D.G. and Morris, M.A.: Microstructure and strength of nanocrystalline copper alloy prepared by mechanical alloying. Acta Metall. Mater. 39, 1763 (1991).CrossRefGoogle Scholar
Zhou, F., Lee, J., and Lavernia, E.J.: Grain growth kinetics of a mechanically milled nanocrystalline Al. Scr. Mater. 44, 2013 (2001).CrossRefGoogle Scholar
Huang, B., Perez, R.J., and Lavernia, E.J.: Grain growth of nanocrystalline Fe-Al alloys produced by cryomilling in liquid argon and nitrogen. Mater. Sci. Eng., A 255, 124 (1998).CrossRefGoogle Scholar
Zhou, F., Rodriguez, R., and Lavernia, E.J.: Thermally stable nanocrystalline Al-Mg alloy powders produced by cryomilling. Mater. Sci. Forum 386388, 409 (2002).CrossRefGoogle Scholar
Cao, P., Lu, L, and Lai, M.O.: Grain growth kinetics for nanocrystalline magnesium alloy produced by mechanical alloying. Mater. Res. Bull. 36, 981 (2001).CrossRefGoogle Scholar
Botcharova, E., Freudenberger, J., and Schultz, L.: Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys. Acta Mater. 54, 3333 (2006).CrossRefGoogle Scholar