Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T04:05:54.412Z Has data issue: false hasContentIssue false

High temperature deformation of vertical gradient freeze method melt-textured Y1Ba2Cu3O7−x

Published online by Cambridge University Press:  31 January 2011

A. Leenders
Affiliation:
Zentrum für Funktionswerkstoffe Göttingen gGmbH, Windausweg 2, 37073 Göttingen, Germany and Institut für Metallphysik, Universität Göttingen, Hospitalstrasse 3-7, 37073 Göttingen, Germany
M. Ullrich
Affiliation:
Zentrum für Funktionswerkstoffe Göttingen gGmbH, Windausweg 2, 37073 Göttingen, Germany
L.-O. Kautschor
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstrasse 3-7, 37073 Göttingen, Germany
H. C. Freyhardt
Affiliation:
Zentrum für Funktionswerkstoffe Göttingen gGmbH, Windausweg 2, 37073 Göttingen, Germany and Institut für Metallphysik, Universitöt Göttingen, Hospitalstrasse 3-7, 37073 Göttingen, Germany
Get access

Abstract

The deformation behavior of melt-textured Y1Ba2Cu3O7-x (YBCO) prepared by the vertical gradient freeze (VGF) method was investigated by high temperature deformation experiments at temperatures ranging from 850 to 950 °C. The experiments were performed in an atmosphere of pure oxygen under uniaxial pressure with constant strain rates in the range from 1 × 10−5 to 5 − 10−4 s−1. An analysis of the dependence of the steady state flow stress on the strain rate and the deformation temperature reveals that the predominant deformation mechanism is dislocation glide and climb controlled by climb at Y-211 particles and that no significant grain boundary sliding occurs. Furthermore, transmission electron microscopy observations of deformed and undeformed samples support a deformation mechanism based on dislocation movement. The total fracture strain, however, does not depend on the temperature or strain rate. Scanning electron microscopy investigations of the fracture faces of samples deformed until fracture reveal that fracture does not occur within the Y-123 matrix but along platelet boundaries. An improvement of the fracture behavior is expected by introducing large Y-211 particles interconnecting neighboring platelets.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Weh, H., May, H., Hupe, H., and Steingröver, A., Proc. Symp. on Power Electronics, Electrical Drives, Advanced Electrical Motors, Taormina, Italy, June 8–10, 1994.Google Scholar
2.Gotho, S., Murakami, M., Fujimoto, H., and Koshizuka, N., J. Appl. Phys. 72, 2404 (1992).CrossRefGoogle Scholar
3.Leenders, A., Ullrich, M., and Freyhardt, H. C., Physica C 279, 173 (1997).CrossRefGoogle Scholar
4.Ullrich, M., Leenders, A., and Freyhardt, H. C., Appl. Phys. Lett. 68, 2735 (1996).CrossRefGoogle Scholar
5.Fuchs, G., Krabbes, G., Schätzle, P., Stoye, P., Staiger, T., and Müller, K-H., Physica C 268, 115 (1996).CrossRefGoogle Scholar
6.Krelaus, J., Leenders, A., Kautschor, L-O., Ullrich, M., and Freyhardt, H. C., Inst. Phys. Conf. Ser. 158, 861 (1997).Google Scholar
7.Ullrich, M. and Freyhardt, H. C., Superconducting Materials, edited by Etourneau, J., Torrance, J. B., and Yamauchi, H. (IITT International, Gournay sur Marne, France, 1993), pp. 205210.Google Scholar
8.Müller, D., Ullrich, M., Heinemann, K., and Freyhardt, H. C., Critical Currents in Superconductors, edited by Weber, H. W. (World Scientific, Singapore, 1994), p. 46.Google Scholar
9.Ullrich, M., Müller, D., Heinemann, K., and Freyhardt, H. C., Critical Currents in Superconductors, edited by Weber, H. W. (World Scientific, Singapore, 1994), p. 443.Google Scholar
10.Müller, D. and Freyhardt, H. C., Physica C 242, 283 (1995).CrossRefGoogle Scholar
11.Müller, D., Ullrich, M., Heinemann, K., and Freyhardt, H.C., Applied Superconductivity, edited by Dew-Hughes, D. (Institut of Physics, Bristol and Philadelphia, 1995), Vol. I, p. 151.Google Scholar
12.Cannon, W.R. and Langdon, T.G., J. Mater. Sci. 18, 1 (1983).CrossRefGoogle Scholar
13.Cannon, W.R. and Langdon, T.G., J. Mater. Sci. 23, 1 (1988).CrossRefGoogle Scholar
14.Tu, K.N., Yeh, N. C., Park, S. I., and Tsuei, C. C., Phys. Rev. B 39, 304 (1989).CrossRefGoogle Scholar
15.Rothman, S.J., Routbort, J.L., and Barker, J. E., Phys. Rev. B 40, 8852 (1989).CrossRefGoogle Scholar
16.Routbort, J. L., Rothman, S. J., Chen, N., Mundy, J.N., and Barker, J. E., Phys. Rev. B 43, 5489 (1991).CrossRefGoogle Scholar
17.Chen, N., Rothman, S. J., Routbort, J. L., and Goretta, K. C., J. Mater. Res. 7, 2308 (1992).CrossRefGoogle Scholar
18.Jimenez-Melendo, M., De Arellano-Lopez, A.R., Dominguez, A., Goretta, K. C., and Routbort, J. R., Acta Metall. Mater. 43, 2429 (1995).CrossRefGoogle Scholar