Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-08T01:22:54.717Z Has data issue: false hasContentIssue false

High pressure compaction of nanosize ceramic powders

Published online by Cambridge University Press:  31 January 2011

M. R. Gallas
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, P.O. Box 15051, Porto Alegre 91501-970, RS, Brazil
A. R. Rosa
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, P.O. Box 15051, Porto Alegre 91501-970, RS, Brazil
T. H. Costa
Affiliation:
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
J. A. H. da Jornada
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, P.O. Box 15051, Porto Alegre 91501–970, RS, Brazil
Get access

Abstract

High-density ceramic materials from nanosize ceramic powders were produced by high pressure under nearly hydrostatic environment up to 5.6 GPa, on a special configuration in a toroidal-type apparatus, at room temperature. Attempts to use a common solid pressure transmitting medium, as NaCl, resulted in cracked samples. Lead and indium, which have an extremely low shear strength, proved to be the suitable choices as a pressure-transmitting medium to compact these ceramic materials, in order to obtain high-density samples. Transparent amorphous SiO2-gel and translucent γ−Al2O3 samples, in bulk, with volumes about 40 mm3, hard and crack-free were obtained. Densities over 90% of full density for the γ−Al2O3 samples and over 80% for the compacted SiO2-gel samples were obtained. In addition, from the density-pressure curve, the yield strength (σ) for γ−Al2O3 was estimated, for the first time, as 2.6 GPa. Vickers microhardness values were in the range of 5.7 GPa for the γ−Al2O3 samples, and 4.0 GPa for the SiO2-gel samples, under loads of 50 g. An important and practical application of these results is the possibility of producing bulk γ−Al2O3, a new alumina material, which was not possible to prepare before due to the conversion to a phase during the normal sintering process. Additionally, specially for SiO2-gel, a very important application of this study is the possibility of incorporation of organic substances in an inorganic matrix, using high pressure at room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Karch, J., Birringer, R., and Gleiter, H., Nature (London) 330, 556 (1987).CrossRefGoogle Scholar
2.Andrievskii, R. A., Grebtsova, O. M., Domashneva, E. P., Kiyanskii, I. A., Kurkin, E. N., Perel'man, V. E., Sinitsyn, V. I., Torbova, O. D., and Torbov, V. I., Phys. Dokl. 38. 308 (1993).Google Scholar
3.Provenzano, V., Louat, N. P., Iman, M. A., and Sadanada, K., Nanostructured Mater. 1, 89 (1992).Google Scholar
4.Eastman, J. A., Liao, Y. X., Narayanasam, A., and Siegel, R. W., in Processing Science of Advanced Ceramics, edited by Aksay, I. A., McVay, G. L., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 155, Pittsburgh, PA, 1989), p. 255.Google Scholar
5.Siegel, R. W., Nanostructured Mater. 3, 1 (1993).CrossRefGoogle Scholar
6.Neto, A. O. Kunrath, Study of Ceramic Sintering by High-Pressure (in Portuguese), Master Thesis-UFRGS/PPGEMM (1990).Google Scholar
7.Pechenik, A., Piermarini, G. J., and Danforth, S. C., Nanostructured Mater. 2, 479 (1993).CrossRefGoogle Scholar
8.Gallas, M. R., Hockey, B., Pechenik, A., and Piermarini, G. J., J. Am. Ceram. Soc. 77, 2107 (1994).CrossRefGoogle Scholar
9.Woods, D. L. and Rabinovich, E. M., Appl. Spectrosc. 43, 263 (1989).Google Scholar
10.Vasconcelos, W. L., DeHoff, R. T., and Hench, L. L., J. Non-Cryst. Solids 121, 124 (1990).Google Scholar
11.Brinker, C. J. and Scherer, G. S., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990).Google Scholar
12.Sakka, S., Aoki, K., Kozuka, H., and Yamaguchi, J., J. Mater. Sci. 28, 4607 (1993).CrossRefGoogle Scholar
13.Wakatsuki, M., Ichinose, K., and Aoki, T., Jpn. J. Appl. Phys. 1, 578 (1972).Google Scholar
14.Khvostantsev, L. G., High Temp.–High Press. 16, 165 (1984).Google Scholar
15.Sherman, W. F. and Stadtmuller, A. A., Experimental Techniques in High-Pressure Research (John Wiley & Sons Ltd., New York, 1987).Google Scholar
16.Baumard, J. F. and Coupelle, P., J. Mater. Sci. Lett. 13, 93 (1994).Google Scholar
17.Arzt, E., Acta Metall. 30, 1883 (1982).CrossRefGoogle Scholar
18.Helle, A. S., Easterling, K. E., and Ashby, M. F., Acta Metall. 33, 2163 (1985).CrossRefGoogle Scholar
19.Heckel, R. W., Trans. Metall. Soc. AIME 221, 1001 (1961).Google Scholar
20.Lark-Horowitz, K. and Johnson, V. A., in Methods of Experimental Physics, edited by Metzger, M. (Academic Press, New York, 1959).Google Scholar
21.Yonagisawa, K., Nishioka, M., Yoku, K., and Yamasaki, N., J. Mater. Sci. Lett. 12, 1073 (1993).Google Scholar
22.Ying, J. Y., Benziger, J. B., and Navrotsky, A., J. Am. Ceram. Soc. 76, 2571 (1993).Google Scholar
23.Gallas, M. R., Costa, T. M. H., Benvenutti, E. V., Rosa, A. R., and Jornada, J. A. H. da, High Pressure Drying and Compaction of Nanosize Silica Gel, First National Symposium of Glass, Águas de Lindóia, São Paulo, 1995.Google Scholar
24.Costa, T. M. H., Gallas, M. R., Benvenutti, E. V., and Jornada, J. A. H. da, unpublished research.Google Scholar