Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T02:06:31.668Z Has data issue: false hasContentIssue false

Hidden parameters in the plasma deposition of microcrystalline silicon solar cells

Published online by Cambridge University Press:  31 January 2011

M.N. van den Donker
Affiliation:
Institut für Energieforachung-Photovaltank (IPV), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
B. Rech
Affiliation:
Institut für Energieforachung-Photovaltank (IPV), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
R. Schmitz
Affiliation:
Institut für Energieforachung-Photovaltank (IPV), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
J. Klomfass
Affiliation:
Institut für Energieforachung-Photovaltank (IPV), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
G. Dingemans
Affiliation:
Institut für Energieforachung-Photovaltank (IPV), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
F. Finger*
Affiliation:
Institut für Energieforachung-Photovaltank (IPV), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
L. Houben
Affiliation:
Institut für Festkorpenforschung (IFF), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
W.M.M. Kessels
Affiliation:
Applied Physics, Technical University (TU) Eindhoven, Eindhoven 5600MB, The Netherlands
M.C.M. van de Sanden
Affiliation:
Applied Physics, Technical University (TU) Eindhoven, Eindhoven 5600MB, The Netherlands
*
c)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effect of process parameters on the plasma deposition of μc-Si:H solar cells is reviewed in this article. Several in situ diagnostics are presented, which can be used to study the process stability as an additional parameter in the deposition process. The diagnostics were used to investigate the stability of the substrate temperature during deposition at elevated power and the gas composition during deposition at decreased hydrogen dilution. Based on these investigations, an updated view on the role of the process parameters of plasma power, heater temperature, total gas flow rate, and hydrogen dilution is presented.

Type
Outstanding Meeting Papers
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yamamoto, K., Yoshimi, M., Tawada, Y., Fukuda, S., Sawada, T., Meguro, T., Takata, H., Suezaki, T., Koi, Y., Hayashi, K., Suzuki, T., Ichikawa, M. Nakajima, A.: Large area thin film Si module. Sol. Energy Mater. Sol. Cells 74, 449 2002CrossRefGoogle Scholar
2Rech, B., Repmann, T., van den Donker, M.N., Berginski, M., Kilper, T., Hüpkes, J., Calnan, S., Stiebig, H. Wieder, S.: Challenges in microcrystalline silicon based solar cell technology. Thin Solid Films 511–512, 548 2006Google Scholar
3Smit, C., Hamers, E.A.G., Korevaar, B.A., van Swaaij, R.A.C.M.M. van de Sanden, M.C.M.: Fast deposition of microcrystalline silicon with an expanding thermal plasma. J. Non-Cryst. Solids 299–302, 98 2002CrossRefGoogle Scholar
4Kosku, N., Kurisu, F., Takegoshi, M., Takahashi, H. Miyazaki, S.: High-rate deposition of highly crystallized silicon films from inductively coupled plasma. Thin Solid Films 435, 39 2003CrossRefGoogle Scholar
5Shirai, H., Arai, T. Ueyama, H.: The generation of high-density microwave plasma and its application to large-area microcrystalline silicon thin film formation. Jpn. J. Appl. Phys. 37, L1078 1998Google Scholar
6Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B. Wagner, H.: Intrinsic microcrystalline silicon: A new material for photovoltaics. Sol. Energy Mater. Sol. Cells 62, 97 2000Google Scholar
7Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F. Wagner, H.: Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth. Philos. Mag. A 77, 1447 1998Google Scholar
8Mai, Y., Klein, S., Carius, R., Wolff, J., Lambertz, A., Finger, F. Geng, X.: Microcrystalline silicon solar cells deposited at high rates. J. Appl. Phys. 97, 114913 2005CrossRefGoogle Scholar
9Rech, B., Roschek, T., Repmann, T., Müller, J., Schmitz, R. Appenzeller, W.: Microcrystalline silicon for large area thin film solar cells. Thin Solid Films 427, 157 2003CrossRefGoogle Scholar
10Kondo, M., Fukawa, M., Guo, L. Matsuda, A.: High rate growth of microcrystalline silicon at low temperatures. J. Non-Cryst. Solids 266–269, 84 2000CrossRefGoogle Scholar
11Roschek, T., Rech, B., Müller, J., Schmitz, R. Wagner, H.: Influence of the total gas flow on the deposition of microcrystalline silicon solar cells. Thin Solid Films 451–452, 466 2004Google Scholar
12Roschek, T., Repmann, T., Müller, J., Rech, B. Wagner, H.: Comprehensive study of microcrystalline silicon solar cells deposited at high rate using 13.56 MHz plasma-enhanced chemical vapor deposition. J. Vac. Sci. Technol. A 20, 492 2002CrossRefGoogle Scholar
13Sansonnens, L., Pletzer, A., Magni, D., Howling, A.A., Hollenstein, Ch., Schmitt, J.P.M.: A voltage uniformity study in large-area reactors for RF plasma deposition. Plasma Sources Sci. Technol. 6, 170 1997Google Scholar
14Lisovskiy, V.A. Yegorenkov, V.D.: Rf breakdown of low-pressure gas and a novel method for determination of electron-drift velocities in gases. J. Phys. D Appl. Phys. 31, 3349 1998CrossRefGoogle Scholar
15Kluth, O., Rech, B., Houben, L., Wieder, S., Schöpe, G., Beneking, C., Wagner, H., Löffl, A. Schock, H.W.: Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films 351, 247 1999CrossRefGoogle Scholar
16Kluth, O., Schöpe, G., Hüpkes, J., Agashe, C., Müller, J. Rech, B.: Modified Thornton model for magnetron sputtered zinc oxide: Film structure and etching behaviour. Thin Solid Films 442, 80 2003Google Scholar
17van den Donker, M.N., Schmitz, R., Appenzeller, W., Rech, B., Kessels, W.M.M. van de Sanden, M.C.M.: The role of plasma induced substrate heating during high-rate deposition of microcrystalline silicon solar cells. Thin Solid Films 511–512, 562 2006CrossRefGoogle Scholar
18van den Donker, M.N., Rech, B., Finger, F., Kessels, W.M.M. van de Sanden, M.C.M.: Highly efficient microcrystalline silicon solar cells deposited from a pure SiH4 flow. Appl. Phys. Lett. 87, 263503 2005Google Scholar
19Feitknecht, L., Meier, J., Torres, P., Zürcher, J. Shah, A.: Plasma deposition of thin film silicon: Kinetics monitored by optical emission spectroscopy. Sol. Energy Mater. Sol. Cells 74, 539 2002CrossRefGoogle Scholar
20Strahm, B., Howling, A.A., Sansonnens, L., Hollenstein, Ch., Kroll, U., Meier, J., Ellert, Ch., Feitknecht, L. Ballif, C.: Microcrystalline silicon deposited at high rate on large areas from pure silane with efficient gas utilization. Sol. Energy Mater. Sol. Cells 91, 495 2007CrossRefGoogle Scholar