Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T16:37:13.496Z Has data issue: false hasContentIssue false

Hetoroporous heterogeneous ceramics for reusable thermal protection systems

Published online by Cambridge University Press:  01 May 2013

Alberto Ortona*
Affiliation:
SUPSI ICIMSI, Strada Cantonale, Galleria 2, 6928 Manno, Switzerland
Claudio Badini
Affiliation:
Politecnico di Torino, Department of Applied Science and Technology, 10129 Torino, Italy
Volker Liedtke
Affiliation:
Aerospace and Advanced Composites GMBH Viktor-Kaplan-Strasse 2 2700 Wiener Neustadt, Austria
Christian Wilhelmi
Affiliation:
EADS Innovation Works Dept. IW-MS 81663 Munich, Germany
Claudio D’Angelo
Affiliation:
SUPSI ICIMSI, Strada Cantonale, Galleria 2, 6928 Manno, Switzerland
Daniele Gaia
Affiliation:
Erbicol SA, Viale Pereda 22, 6828 Balerna, Switzerland
Wolfgang Fischer
Affiliation:
Astrium Space Transportation GmbH Airbus-Allee 1, 28199 Bremen, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Reusable thermal protection systems of reentry vehicles are adopted for temperatures ranging between 1000 and 2000 °C, when gas velocity and density are relatively low; they exploit the low thermal conductivity of their constituent materials. This paper presents a new class of light structural thermal protection systems comprised of a load bearing structure made of a macroporous reticulated SiSiC, filled with compacted short alumina/mullite fibers. Their manufacturing process is very simple and does not require special devices or ambient conditions. The produced hetoroporous heterogeneous ceramics showed high radiations shielding capabilities up to 2000 °C in vacuum. Even after repeated exposures at higher temperatures, a significant degradation of the SiSiC scaffold was not observed.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gnoffo, P.A.: Planetary-entry gas dynamics. Annu. Rev. Fluid Mech. 31, 459 (1999).CrossRefGoogle Scholar
Bertin, J.J. and Cummings, R.M.: Critical hypersonic aerothermodynamic phenomena. Annu. Rev. Fluid Mech. 38, 129 (2006).CrossRefGoogle Scholar
Johnson, S.M.: Approach to TPS development for hypersonic applications at NASA AMES research center, in 5th European Workshop on Thermal Protection Systems and Hot Structures, edited by K. Fletcher (ESA SP-631, European Space Agency, 2006), p. 1.Google Scholar
Hurwitz, F.I.: Thermal protection systems (TPSs), in Encyclopedia of Aerospace Engineering, edited by R. Blockley and W. Shyy (John Wiley & Sons, Ltd., New York, NY, 2010).Google Scholar
Scotti, S.J., Clay, C., and Rezin, M.: Structures and materials technologies for extreme environments applied to reusable launch vehicles, in AIAA/ICAS International Symposium and Exposition (AIAA, 2003).Google Scholar
Glass, D.E.: Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles, in 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference (AIAA, 2008), p. 2008.Google Scholar
Glass, D.E.: European directions for hypersonic thermal protection systems and hot structures, in 31st Annual Conference on Composite Materials and Structures (USACA, 2007).Google Scholar
Fischer, W.P.P.: Thermal protection systems portfolio of ASTRIUM GmbH - recent developments, in 6th European Workshop on Thermal Protection Systems and Hot Structures (European Space Agency, 2009).Google Scholar
Myers, D.E., Martin, C.J., and Blosser, M.L.: Parametric weight comparison of current and proposed thermal protection system (TPS) concepts, in 33rd Thermophysics Conference (AIAA, 1999), p. 1999.Google Scholar
Pichon, T., Barreteau, R., Soyris, P., Foucault, A., Parenteau, J.M., Prel, Y., and Guedron, S.: CMC thermal protection system for future reusable launch vehicles: Generic shingle technological maturation and tests. Acta Astronaut. 65(1–2), 165 (2009).CrossRefGoogle Scholar
Dadd, G.J., Owen, R.E., Hodges, J., and Atkinson, K.N.: Sustained hypersonic flight experiment (SHyFE), in 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference (AIAA, 2006), p. 2006.Google Scholar
Studart, A.R., Gonzenbach, U.T., Tervoort, E., and Gauckler, L.J.: Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 89(6), 1771 (2006).CrossRefGoogle Scholar
Brezny, R. and Green, D.J.: Uniaxial strength behavior of brittle cellular materials. J. Am. Ceram. Soc. 76(9), 2185 (1993).CrossRefGoogle Scholar
Brezny, R., Green, D.J., and Dam, C.Q.: Evaluation of strut strength in open-cell ceramics. J. Am. Ceram. Soc. 72(6), 885 (1989).CrossRefGoogle Scholar
Ortona, A., Pusterla, S., and Gianella, S.: An integrated assembly method of sandwich structured ceramic matrix composites. J. Eur. Ceram. Soc. 1821 (2011).CrossRefGoogle Scholar
Ortona, A., D’Angelo, C., and Bianchi, G.: Monitoring sandwich structured SiC ceramics integrity with electrical resistance. NDT and E Int. 77 (2011).Google Scholar
Ashby, M.: Hybrid materials to expand the boundaries of material-property space. J. Am. Ceram. Soc. 94, S3 (2011).CrossRefGoogle Scholar
Ortona, A., D'Angelo, C., Gianella, S., and Gaia, D.: Cellular ceramics produced by rapid prototyping and replication. Mater. Lett. 80, 95 (2012).CrossRefGoogle Scholar
Ortona, A., Pusterla, S., Fino, P., Mach, F., Delgado, A., and Biamino, S.: Aging of reticulated Si-SiC foams in porous burners. Adv. Appl. Ceram. 109(4), 246 (2010).CrossRefGoogle Scholar
Hurwitz, F.I.: Improved fabrication of ceramic matrix composite/foam core integrated structures, in NASA Tech Briefs (NASA, 2009), p. 15.Google Scholar
Schwartzwalder, K., Somers, H. and Somers, A.V.: Method of making porous ceramic articles. U.S. Patent No. 3090094, 1963.Google Scholar
Adler, G., Graeber, M., Standke, M., Jaunich, H., Stoever, H., and Stoetzel, R.: Open-Cell Expanded Ceramic with A High Level of Strength, and Process for the Production Thereof (FRAUNHOFER GES FORSCHUNG, 1996). Edited by European patent office, Munich.Google Scholar
Mills, N.: Polymer Foams Handbook Engineering and Biomechanics Applications and Design Guide (Butterworth-Heinemann, Oxford, UK, 2007).Google Scholar
Sullivan, R.M., Ghosn, L.J., and Lerch, B.A.: A general tetrakaidecahedron model for open-celled foams. Int. J. Solids Struct. 45(6), 1754 (2008).CrossRefGoogle Scholar
Gibson, L.J. and Ashby, M.F.: Cellular Solids Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, UK, 1997).CrossRefGoogle Scholar
D’Angelo, C., Ortona, A. and Colombo, P.: Finite element analysis of reticulated ceramics under compression. Acta Mater. 60(19), 6692 (2012).CrossRefGoogle Scholar
Pusterla, S., Ortona, A., D’Angelo, C., and Barbato, M.: The influence of cell morphology on the effective thermal conductivity of reticulated ceramic foams. J. Porous Mater. 19(3), 307 (2011).CrossRefGoogle Scholar
Nannetti, C.A., Ortona, A., Pinto, D.A., and Riccardi, B.: Manufacturing SiC‐fiber‐reinforced SiC matrix composites by improved CVI/slurry infiltration/polymer impregnation and pyrolysis. J. Am. Ceram. Soc. 87(7), 1205 (2004).CrossRefGoogle Scholar
Scheer, H., Tran, P., and Berthe, P.: ARV reentry module aerodynamics and aerothermodynamics, in (ESA Special Publication, 2011), p. 121.Google Scholar
Desai, P.D.: Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data 15(3), 967 (1986).CrossRefGoogle Scholar
Wei, K., Ma, W., Yang, B., Liu, D., Dai, Y., and Morita, K.: Study on volatilization rate of silicon in multicrystalline silicon preparation from metallurgical grade silicon. Vacuum 85(7), 749 (2011).CrossRefGoogle Scholar
Xiao, Z. and Mitchell, B.S.: Mullite decomposition kinetics and melt stabilization in the temperature range 1900—2000°C. J. Am. Ceram. Soc. 83(4), 761 (2000).CrossRefGoogle Scholar
Jacobson, N.S. and Myers, D.L.: Active oxidation of SiC. Oxid Met. 75(1–2), 1 (2011).CrossRefGoogle Scholar