Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T13:22:32.319Z Has data issue: false hasContentIssue false

Heat generation associated with pressure-induced infiltration in a nanoporous silica gel

Published online by Cambridge University Press:  31 January 2011

Aijie Han
Affiliation:
Department of Structural Engineering, University of California–San Diego, La Jolla, California 92093-0085
Venkata K. Punyamurtula
Affiliation:
Department of Structural Engineering, University of California–San Diego, La Jolla, California 92093-0085
Yu Qiao*
Affiliation:
Department of Structural Engineering, University of California–San Diego, La Jolla, California 92093-0085
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

As a liquid moves in the nanopores of a silica gel, because of the hysteresis of sorption behavior, significant energy dissipation can take place. Through a calometric measurement, the characteristics of associated heat generation are investigated. The temperature variation increases with the mass of silica gel, which consists of a reversible part and an irreversible part. The residual temperature change is about 30% to 60% of the maximum temperature increase and can be accumulated as multiple loading cycles are applied.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lefevre, B., Saugey, A., Barrat, J.L., Bocquet, L., Charlaix, E., Gobin, P.F.Vigier, G.: Intrusion and extrusion of water in highly hydrophobic mesoporous materials—Effects of the pore structure. J. Chem. Phys. 120, 4927 2004CrossRefGoogle Scholar
2Surani, F.B., Kong, X.Qiao, Y.: Two staged sorption isotherm of a nanoporous energy absorption system. Appl. Phys. Lett. 87, 251906 2005CrossRefGoogle Scholar
3Surani, F.B., Kong, X., Panchal, D.B.Qiao, Y.: Energy absorption of a nanoporous system subjected to dynamic loadings. Appl. Phys. Lett. 87, 163111 2005CrossRefGoogle Scholar
4Coiffard, L.Eroshenko, V.: Temperature effect on water intrusion/extrusion in grafted silica gels. J. Colloid Interface Sci. 300, 304 2006CrossRefGoogle Scholar
5Dubbeldam, D.Snurr, R.Q.: Recent development in the molecular modeling of diffusion in nanoporous materials. Mol. Simul. 33, 305 2007CrossRefGoogle Scholar
6Lei, Y., Cai, W.P.Wilde, G.: Highly ordered nanostructures with tunable size, shape and properties—A new way to surface nanopatterning using ultra-thin alumina masks. Prog. Mater. Sci. 52, 465 2007CrossRefGoogle Scholar
7Zukal, A.: Recent trends in the synthesis of nanoporous materials. Chem. Listy 101, 208 2007Google Scholar
8Han, A.Qiao, Y.: Pressure induced infiltration of aqueous solutions of multiple promoters in a nanoporous silica. J. Am. Chem. Soc. 128, 10348 2006CrossRefGoogle Scholar
9Chen, X., Surani, F.B., Kong, X., Punyamurtula, V.K.Qiao, Y.: Energy absorption performance of steel tubes enhanced by a nanoporous material functionalized liquid. Appl. Phys. Lett. 89, 241918 2006CrossRefGoogle Scholar
10Surani, F.B., Han, A.Qiao, Y.: An experimental investigation on pressurized liquid in confining nanoenvironment. Appl. Phys. Lett. 89, 093108 2006CrossRefGoogle Scholar
11Punyamurtula, V.K., Han, A.Qiao, Y.: An experimental investigation on a nanoporous carbon functionalized liquid damper. Philos. Mag. Lett. 86, 829 2006CrossRefGoogle Scholar
12Qiao, Y., Punyamurtula, V.K., Han, A., Kong, X.Surani, F.B.: Temperature dependence of working pressure of a nanoporous liquid spring. Appl. Phys. Lett. 89, 251905 2006CrossRefGoogle Scholar
13Han, A.Qiao, Y.: Thermal effects on infiltration of a solubility sensitive volume memory liquid. Philos. Mag. Lett. 87, 25 2007Google Scholar
14Han, A.Qiao, Y.: A volume memory liquid. Appl. Phys. Lett. 91, 173123 2007CrossRefGoogle Scholar
15Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Ravalas, V.Bachas, L.G.: Aligned multiwalled carbon nanotube membranes. Science 303, 62 2004CrossRefGoogle ScholarPubMed
16Gusev, A.A.Guseva, O.: Rapid mass transport in mixed matrix nanotube/polymer membranes. Adv. Mater. 19, 2672 2007CrossRefGoogle Scholar
17Xie, Y.H., Kong, Y., Gao, H.J.Soh, A.K.: Molecular dynamics simulation of polarizable carbon nanotubes. Comput. Mater. Sci. 40, 460 2007CrossRefGoogle Scholar
18Han, A.Qiao, Y.: Effects of nanopore size on properties of modified inner surfaces. Langmuir 23, 11396 2007CrossRefGoogle ScholarPubMed
19Han, A.Qiao, Y.: Controlling infiltration pressure of a nanoporous silica gel via surface treatment. Chem. Lett. (Jpn.) 36, 882 2007CrossRefGoogle Scholar
20Kong, X., Surani, F.B.Qiao, Y.: Energy absorption of nanoporous silica particles in aqueous solutions of sodium chloride. Phys. Scr. 74, 531 2006CrossRefGoogle Scholar
21Surani, F.B.Qiao, Y.: Pressure induced infiltration of an epsomite-silica system. Philos. Mag. Lett. 86, 253 2006CrossRefGoogle Scholar
22Kong, X.Qiao, Y.: Improvement of recoverability of a nanoporous energy absorption system by using chemical admixture. Appl. Phys. Lett. 87, 163111 2005Google Scholar
23Kondratyuk, P.Yates, J.T.: Molecular views of physical adsorption inside and outside of single-wall carbon nanotubes. Accounts Chem. Res. 40, 995 2007CrossRefGoogle ScholarPubMed
24Bhatia, S.K.Nicholson, D.: Anomalous transport in molecularly confined spaces. J. Chem. Phys. 127, 124701 2007CrossRefGoogle ScholarPubMed
25Ockwig, N.W.Nenoff, T.M.: Membranes for hydrogen separation. Chem. Rev. 107, 4078 2007CrossRefGoogle ScholarPubMed
26Li, J.C.M.: Damping of water infiltrated nanoporous glass. J. Alloys Compd. 310, 24 2000CrossRefGoogle Scholar
27Decker, M.J., Halbach, C.J., Nam, C.H., Wagner, N.J.Wetzel, E.D.: Stab resistance of shear thickening fluid treated fabrics. Compos. Sci. Technol. 67, 565 2007CrossRefGoogle Scholar
28Lee, Y.S., Wetzel, E.D.Wagner, N.J.: The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci. 38, 2825 2003CrossRefGoogle Scholar
29Yang, F.Q.: Flow behavior of an Eyring fluid in a nanotube—The effect of the slip boundary condition. Appl. Phys. Lett. 90, 133105 2007CrossRefGoogle Scholar
30Wildgoose, G.G., Banks, C.E., Leventis, H.C.Compton, R.G.: Chemically modified carbon nanotubes for use in electroanalysis. Microchem. Acta 152, 187 2006CrossRefGoogle Scholar
31Han, A., Kong, X.Qiao, Y.: Pressure induced infiltration in nanopores. J. Appl. Phys. 100, 014308 2006CrossRefGoogle Scholar
32Qiao, Y., Cao, G.Chen, X.: Effects of gas molecules on nanofluidic behaviors. J. Am. Chem. Soc. 129, 2355 2007CrossRefGoogle ScholarPubMed