Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T01:28:17.489Z Has data issue: false hasContentIssue false

Hardness, elasticity, and fracture toughness of polycrystalline spinel germanium nitride and tin nitride

Published online by Cambridge University Press:  03 March 2011

M.P. Shemkunas*
Affiliation:
Science and Engineering of Materials Program, Materials Research Science and Engineering Center, Arizona State University, Tempe, Arizona
W.T. Petuskey
Affiliation:
Science and Engineering of Materials Program, Materials Research Science and Engineering Center, Arizona State University, Tempe, Arizona
A.V.G. Chizmeshya
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona
K. Leinenweber
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287
G.H. Wolf
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The hardness, elastic moduli, and fracture toughness of the spinel phases, γ–Ge3N4 and γ–Sn3N4, were determined using indentation data and theoretical calculations. Measurements were performed on polycrystalline specimens using the technique of nanoindentation to determine the reduced moduli and hardnesses from the unloading portion of the indent curves. Reduced moduli of γ–Ge3N4 and γ–Sn3N4 were found to be 295 and 167 GPa, respectively. The nanohardnesses of γ–Ge3N4 and γ–Sn3N4 were found to be 31 and 13 GPa, respectively. The shear moduli G0 and Poisson’s ratios ν0 were derived using theoretical bulk moduli B0 obtained from density-functional theory calculations. The calculated values were B0 = 260 GPa, G0 = 146 GPa, ν0 = 0.26 for γ–Ge3N4, and B0 = 186 GPa, G0 = 64 GPa, ν0 = 0.34 for γ–Sn3N4. Fracture toughness was estimated by direct measurement of radial cracks emanating from Vickers microindents. It was determined that for γ–Ge3N4, KIC = 2.3 MPa(m)1/2, while for γ–Sn3N4, KIC = 1.4 MPa(m).1/2

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zerr, A., Miehe, G., Serghiou, G., Schwarz, M., Kroke, E., Riedel, R., Feuss, H., Kroll, P. and Boehler, R., Synthesis of cubic silicon nitride. Nature 400, 340 (1999).CrossRefGoogle Scholar
2Schwarz, M., Miehe, G., Zerr, A., Kroke, E., Poe, B.T., Feuss, H. and Riedel, R., Spinel-Si3N4: Multi-anvil press synthesis and structural refinement. Adv. Mater. 12, 883 (2000).3.0.CO;2-C>CrossRefGoogle Scholar
3Jiang, J., Stahl, K., Berg, R.W., Frost, D.J., Zhou, T.J. and Shi, P.X., Structural characterization of cubic silicon nitride. Europhys. Lett. 51, 62 (2000).CrossRefGoogle Scholar
4Sekine, T., He, H., Kobayashi, T., Zhang, M. and Xu, F., Shock-induced transformation of beta-Si3N4 to a high-pressure cubic-spinel phase. Appl. Phys. Lett. 76, 3706 (2000).CrossRefGoogle Scholar
5He, H., Sekine, T., Kobayashi, T. and Hirosaki, H., Shock-induced phase transformation of beta-Si3N4 to c-Si3N4. Phys. Rev. B 62, 11412 (2000).CrossRefGoogle Scholar
6Serghiou, G., Miehe, G., Tschauner, O., Zerr, A. and Boehler, R., Synthesis of a cubic Ge3N4 phase at high pressures and temperatures. J. Chem. Phys. 111, 4659 (1999).CrossRefGoogle Scholar
7Leinenweber, K., O’Keefe, M., Somayazulu, M., Hubert, H., McMillan, P.F. and Wolf, G.H., Synthesis and structure refinement of the spinel, gamma-Ge3N4. Chem. Eur. J. 5, 3076 (1999).3.0.CO;2-D>CrossRefGoogle Scholar
8He, H., Sekine, T., Kobayashi, T. and Kimoto, K., Phase transformation of germanium nitride (Ge3N4) under shock wave compression. J. Appl. Phys. 90, 4403 (2001).CrossRefGoogle Scholar
9Scotti, N., Kockelmann, W., Senker, J., Trassel, S. and Jacobs, H., Sn3N4, a tin(IV) nitride—Syntheses and the first crystal structure determination of a binary tin-nitrogen compound. Z. Anorg. Allg. Chem. 625, 1435 (1999).3.0.CO;2-#>CrossRefGoogle Scholar
10Shemkunas, M.P., Wolf, G.H., Leinenweber, K. and Petuskey, W.T., Rapid synthesis of crystalline spinel tin nitride by a solid-state metathesis reaction. J. Am. Ceram. Soc. 85, 101 (2002).CrossRefGoogle Scholar
11Mo, S-D., Ouyang, L., Ching, W.Y., Tanaka, I., Koyama, Y. and Riedel, R., Interesting physical properties of the new spinel phases of Si3N4 and C3N4. Phys. Rev. Lett. 83, 5046 (1999).CrossRefGoogle Scholar
12Ching, W.Y., Mo, S-D., Ouyang, L., Tanaka, I. and Yoshiya, M., Prediction of the new spinel phase of Ti3N4 and SiTi2N4 and the metal-insulator transition,. Phys. Rev. B 61, 10609 (2000).CrossRefGoogle Scholar
13Dong, J., Sankey, O.F., Deb, S.K., Wolf, G. and McMillan, P.F., Theoretical study of beta-Ge3N4 and its high-pressure spinel gamma phase. Phys. Rev. B 61, 11979 (2000).CrossRefGoogle Scholar
14Ching, W.Y., Mo, S-D., Tanaka, I. and Yoshiya, M., Prediction of spinel structure and properties of single and double nitrides. Phys. Rev. B 63, 0641021 (2001).CrossRefGoogle Scholar
15Ching, W.Y., Mo, S-D. and Ouyang, L., Electronic and optical properties of the cubic spinel phase of c-Si3N4, c-Ge3N4, c-SiGe2N4, and GeSi2N4. Phys. Rev. B 63, 2451101 (2001).CrossRefGoogle Scholar
16Ching, W.Y., Mo, S-D., Ouyang, L., Rulis, P., Tanaka, I. and Yoshiya, M., Theoretical prediction of the structure and properties of cubic spinel nitrides. J. Am. Ceram. Soc. 85, 75 (2002).CrossRefGoogle Scholar
17Jiang, J.Z., Kragh, F., Frost, D.J., Stahl, K. and Lindelov, H., Hardness and thermal stability of cubic silicon nitride,. J. Phys. Condens. Matter 13 L515 (2001).CrossRefGoogle Scholar
18Zerr, A., Kempf, M., Schwarz, M., Kroke, E., Goken, M. and Riedel, R., Elastic moduli and hardness of cubic silicon nitride. J. Am. Ceram. Soc. 85, 86 (2002).CrossRefGoogle Scholar
19Tanaka, I., Oba, F., Sekine, T., Ito, E., Kubo, A., Tatsumi, K., Adachi, H. and Yamamoto, T., Hardness of cubic silicon nitride. J. Mater. Res. 17, 731 (2002).CrossRefGoogle Scholar
20Leger, J.M., Haines, J., Schmidt, M., Petitet, J.P., Pereira, A.S. and Jornada, J.A.H. da, Discovery of hardest known oxide. Nature 383, 401 (1996).CrossRefGoogle Scholar
21Oba, F., Tatsumi, K., Adachi, H. and Tanaka, I., N- and p-type dopants for cubic silicon nitride. Appl. Phys. Lett. 78, 1577 (2001).CrossRefGoogle Scholar
22Oba, F., Tatsumi, K., Tanaka, I. and Adachi, H., Effective doping in cubic Si3N4 and Ge3N4: A first principles study. J. Am. Ceram. Soc. 85, 97 (2002).CrossRefGoogle Scholar
23Soignard, E., Somayazulu, M., Dong, J., Sankey, O.F. and McMillan, P.F., High pressure-high temperature synthesis and elasticity of cubic nitride spinel gamma-Si3N4. J. Phys. Condens. Matter 13, 557 (2001).CrossRefGoogle Scholar
24Deb, S.K., Dong, J., Hubert, H., McMillan, P.F. and Sankey, O.F., The raman spectra of the hexagonal and cubic (spinel) forms of Ge3N4: an experimental and theoretical study. Sol. State Commun. 114, 137 (2000).CrossRefGoogle Scholar
25Lutzenkirchen-Hecht, D., Scotti, N., Jacobs, H.,andFrahm, R.XAFS investigations of tin nitrides, J. Synchrotron Rad. 8, 698 (2001).CrossRefGoogle ScholarPubMed
26Somayazulu, M.S., Leinenweber, K., Hubert, H., McMillan, P.F. and Wolf, G.H. High pressure-high temperature synthesis of spinel Ge3N4, in Science and Technology of High Pressure, Proceedings of AIRAPT-17, edited by Manghnani, M.H., Nellis, W. J., and Nicol, M. F. (Universities Press, Hyderbad, India, 2000), p. 663.Google Scholar
27Evans, A.G. and Charles, E.A., Fracture toughness determinations by indentations. J. Am. Ceram. Soc. 59, 371 (1976).CrossRefGoogle Scholar
28Lawn, B.R., Evans, A.G. and Marshall, D.B., Elastic/plastic indentation damage in ceramics: The median/radial crack system. J. Am. Ceram. Soc. 63,574 (1980).CrossRefGoogle Scholar
29Anstis, G.R., Chantikul, P., Lawn, B.R. and Marshall, D.B., A critical evaluation of indentation techniques of measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
30Niihara, K., Morena, R. and Hasselman, D.P.H., Evaluation of K1c of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1, 13 (1982).CrossRefGoogle Scholar
31Lankford, J., Indentation microfracture in the Palmqvist crack regime: Implications for fracture toughness evaluation by the indentation method. J. Mater. Sci. Lett. 1, 493 (1982).CrossRefGoogle Scholar
32Pharr, G.M., Measurement of mechanical properties by ultra-low load indentation. Mater. Sci. Eng. A 253, 151 (1998).CrossRefGoogle Scholar
33Oliver, W.C. and Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
34Doerner, M.F. and Nix, W.D., A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
35 J.L. Loubet, J.M. Georges, O. Marchesini, and G. Meille: Vickers indentation curves of magnesium oxide (MgO). J. Tribology 10643 (1984).CrossRefGoogle Scholar
36Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. (MIT Press, Cambridge, MA, 1971), p. 186.Google Scholar
37Kreese, G. and Furthmuller, J., Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
38Kresse, G. and Furthmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6,15 (1996).CrossRefGoogle Scholar
39Kresse, G. and Hafner, J., Norm-conserving and ultra-soft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matt. 6, 8245 (1994).CrossRefGoogle Scholar
40Kresse, G. and Joubert, J., From ultra-soft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
41Birch, F., Finite strain isotherm and velocities for single crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res. 83, 1257 (1978).CrossRefGoogle Scholar
42Wachtman, J.B., Mechanical Properties of Ceramics (John Wiley and Sons Inc New York, 1996), pp. 25, 53, 6687.Google Scholar
43Teter, D.M., Computational alchemy: The search for new superhard materials. MRS Bull. 23, 22 (1998).CrossRefGoogle Scholar
44Kroll, P., Eck, B. and Dronskowski, R., First-principles studies of extended nitride materials. Adv. Mater. 12, 307 (2000).3.0.CO;2-X>CrossRefGoogle Scholar
45Chantikul, P., Anstis, G.R., Lawn, B.R. and Marshall, D.B., A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method. J. Am. Ceram. Soc. 64, 539 (1981).CrossRefGoogle Scholar