Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T00:59:48.483Z Has data issue: false hasContentIssue false

Growth of thick Yba2Cu3O7−δ films carrying a critical current of over 230 A/cm on single LaMnO3-buffered ion-beam assisted deposition MgO substrates

Published online by Cambridge University Press:  31 January 2011

M. Paranthaman
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
T. Aytug
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. K. Christen
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
P. N. Arendt
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
S. R. Foltyn
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. R. Groves
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
L. Stan
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R. F. DePaula
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H. Wang
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
T. G. Holesinger
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

A single LaMnO3 buffer layer was developed for the growth of superconducting thick YBa2Cu3O7−δ (YBCO) films on polycrystalline Ni-alloy substrates where a biaxially textured MgO layer, produced by ion-beam assisted deposition (IBAD), was used as a template. Using pulsed laser deposition, a 1.65-μm-thick YBCO film with a critical current density of 1.4 × 106 A/cm2 in self field at 75 K was achieved on sputtered LaMnO3-buffered IBAD MgO substrates. This corresponds to a critical current (Ic) of 231 A/cm-width. This result demonstrates the possibility of using both LaMnO3 buffer and IBAD MgO template for producing high current density YBCO-coated conductors.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Usoskin, A., Freyhardt, H.C., Issaev, A., Dzick, J., Knoke, J., Oomen, M.P., Leghissa, M., and Neumueller, H-W., IEEE Trans. Appl. Supercond. 13, 2452 (2003).CrossRefGoogle Scholar
2.Pellegrino, P.J., presented at the DOE Wire Workshop, St. Petersburg, FL, January 21–22, 2003. For details, please check this website: http://www.eere.energy.gov/superconductivity/pdfs/ 4-pelligrino-sp.pdfGoogle Scholar
3.Kakimoto, K., Iijima, Y., and Saitoh, T., Physica C 378–381, 937 (2002); Iijima, Y., Kakimoto, K., and Saitoh, T., IEEE Trans. Appl. Supercond. 13, 2466 (2003).CrossRefGoogle Scholar
4.Verebelyi, D.T., Schoop, U., Thieme, C., Li, X., Zhang, W., Kodenkandath, T., Malozemoff, A.P., Nguyen, N., Siegal, E., Buczek, D., Lynch, J., Scudiere, J., Rupich, M., Goyal, A., Specht, E.D., Martin, P., and Paranthaman, M., Supercond. Sci. Technol. 16, L19 (2003).CrossRefGoogle Scholar
5.Wang, C.P., Do, K.B., Beasley, M.R., Geballe, T.H., and Hammond, R.H., Appl. Phys. Lett. 71, 2955 (1997).CrossRefGoogle Scholar
6.Paranthaman, M.P., Aytug, T., Zhai, H.Y., Sathyamurthy, S., Goyal, A., Martin, P.M., Christen, D.K., Erickson, R.E., and Thomas, C.L., in Materials for High Temperature Superconductor Technologies, edited by Paranthaman, M.P., Rupich, M.W., Salama, K., Mannhart, J., and Hasegawa, T. (Mater. Res. Soc. Symp. Proc., Vol. 689, Warrendale, PA, 2002), p. 323.Google Scholar
7.Aytug, T., Paranthaman, M., Zhai, H.Y., Christen, H.M., Sathyamurthy, S., Christen, D.K., and Ericson, R.E., J. Mater. Res. 17, 2193 (2002).CrossRefGoogle Scholar
8.Paranthaman, M.P., Aytug, T., Kang, S., Feenstra, R., Budai, J.D., Christen, D.K., Arendt, P.N., Stan, L., Groves, J.R., DePaula, R.F., Foltyn, S.R., and Holesinger, T.G., IEEE Trans. Appl. Supercond. (2003, in press).Google Scholar
9.Groves, J.R., Arendt, P.N., Foltyn, S.R., Jia, Q.X., Holesinger, T.G., Kung, H., Peterson, E.J., DePaula, R.F., Dowden, P.C., Stan, L., and Emmert, L.A., J. Mater. Res. 16, 2175 (2001).CrossRefGoogle Scholar
10.Groves, J.R., Arendt, P.N., Foltyn, S.R., Jia, Q.X., Holesinger, T.G., Emmert, L.A., DePaula, R.F., Dowden, P.C., and Stan, L., IEEE Trans. Appl. Supercond. (2003, in press).Google Scholar
11.Foltyn, S.R., Arendt, P.N., Dowden, P.C., DePaula, R.F., Groves, J.R., Coulter, J.Y., Jia, Q., Maley, M.P., and Peterson, D.E., IEEE Trans. Appl. Supercond. 9, 1519 (1999).CrossRefGoogle Scholar
12.Jia, Q.X., Foltyn, S.R., Arendt, P.N., Groves, J.R., Holesinger, T.G., Hawley, M.E., and Lu, P., Appl. Phys. Lett. 81, 4571 (2002).CrossRefGoogle Scholar
13.Li, X., Rupich, M.W., Zhang, W., Nguyen, N., Kodenkandath, T., Schoop, U., Verebelyi, D.T., Malozemoff, A.P., Arendt, P.N., Foltyn, S.R., Holesinger, T.G., Aytug, T., Christen, D.K., and Paranthaman, M.P., Physica C (2003, in press).Google Scholar