Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T01:34:50.076Z Has data issue: false hasContentIssue false

Growth of silver nanowires using mica structure as a template and ultrahigh dielectric permittivity of the nanocomposite

Published online by Cambridge University Press:  31 January 2011

P. K. Mukherjee
Affiliation:
Indian Association for the Cultivation of Science, Calcutta 700 032, India
D. Chakravorty
Affiliation:
Indian Association for the Cultivation of Science, Calcutta 700 032, India
Get access

Abstract

Fluorphlogopite mica crystallites of dimensions in the range 0.5 to 24 µm were grown within silicate glass of suitable compositions by heat treatment at 1168 K. After an ion exchange treatment (K+ ⇆ Ag+) the specimens were subjected to an electrodeposition reaction. With the optimum concentration of K+ ions in the precursor glass, electrodeposition brought about the growth of silver nanowires about 0.5 nm diameter within the nanochannels of the fluorphlogopite mica structure. By applying a voltage pulse of 20 volts of duration 3 s, break junctions could be induced in the nanowires. A high dielectric constant of around 1.0 × 107was found in the resultant specimen. This was shown to be quantum mechanical in origin and arose due to the presence of metal filaments about 1280 nm in length. An asymmetric voltage–current characteristic was recorded at 114 K in the case of the specimen containing silver nanowires grown within the mica structure. This is believed to arise due to formation of a nanojunction between the metal nanowire and silver nanoparticles with diameters of less than 3 nm. The latter were earlier shown to behave as insulators

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Puntes, V.F., Krishnan, K.M., and Alivisatos, A.P., Science 291, 2115 (2001).CrossRefGoogle Scholar
2.Postma, H.W.Ch., Toepen, T., Yao, Z., Grifoni, M., and Dekker, C., Science 293, 76 (2001).CrossRefGoogle Scholar
3.Thompson, R.B., Ginzburg, V.V., Matsen, M.W., and Balazs, A.C., Science 292, 2469 (2001).CrossRefGoogle Scholar
4.Tang, Z.K., Zhang, L., Wang, N., Zhang, X.X., Wen, G.H., Li, G.D., Wang, J.N., Chan, C.T., and Sheng, P., Science 292, 2462 (2001).CrossRefGoogle Scholar
5.Lee, S.T., Zhang, Y.F., Wang, N., Tang, Y.H., Bello, I., Lee, C.S., and Chung, Y.W., J. Mater. Res. 14, 4503 (1999).CrossRefGoogle Scholar
6.Han, W., Fan, S., Li, Q., and Hu, Y., Science 277, 1287 (1997).CrossRefGoogle Scholar
7.Cheng, G.S., Zhang, L.D., Zhu, Y., Fei, G.T., Li, L., Mo, C.M., and Mao, Y.Q., Appl. Phys. Lett. 75, 2455 (1999).CrossRefGoogle Scholar
8.Blythe, H.J., Fedosynk, V.M., Kasyutich, O.I., and Schwarzacher, W., J. Magn. Magn. Mater. 208, 251 (2000).CrossRefGoogle Scholar
9.Routkevich, D., Bigioni, T., Moskovits, M., and Xu, J.M., J. Phys. Chem. 100, 14037 (1996).CrossRefGoogle Scholar
10.Foss, C.A., Tierney, M.J., and Martin, C.R., J. Phys. Chem. 96, 9001 (1992).CrossRefGoogle Scholar
11.Zach, M.P., Ng, K.H., and Penner, R.M., Science 290, 2120 (2000).CrossRefGoogle Scholar
12.Sauer, G., Brehm, G., Schneider, S., Nielsch, K., Wehrspohn, R.B., Choi, J., Hofmeister, H., and Gosele, U., J. Appl. Phys. 91, 3243 (2002).CrossRefGoogle Scholar
13.Jessonsky, O., Muller, F., and Gosele, U., Appl. Phys. Lett. 72, 1173 (1998).CrossRefGoogle Scholar
14.Barbic, M., Mock, J.J., Smith, D.R., and Schultz, S., J. Appl. Phys. 91, 9341 (2002).CrossRefGoogle Scholar
15.Bhattacharyya, S., Saha, S.K., and Chakravorty, D., Appl. Phys. Lett. 77, 3770 (2000).CrossRefGoogle Scholar
16.Martin, C.R., Science 266, 1961 (1994).CrossRefGoogle Scholar
17.Tonucci, R.J., Justus, B.L., Campillo, A.J., and Ford, C.E., Science 258, 783 (1992).CrossRefGoogle Scholar
18.Braun, E., Eichen, Y., Sivan, U., and Ben-Yoseph, G., Nature (London) 391, 750 (1998).Google Scholar
19.Xia, Y., Rogers, J.A., Paul, K., and Whitesides, G.M., Chem. Rev. 99, 1823 (1999).CrossRefGoogle Scholar
20.Beall, G.H., in Current Trends in the Science and Technology of Glass, edited by Jain, H., Cooper, A.R., Rao, K.J., and Chakravorty, D. (World Scientific, Singapore, 1989), p. 113.Google Scholar
21.Roy, S. and Chakravorty, D., Appl. Phys. Lett. 59, 1415 (1991).CrossRefGoogle Scholar
22.Banerjee, S., Banerjee, S., Datta, A., and Chakravorty, D., Europhys. Lett. 46, 346 (1999).CrossRefGoogle Scholar
23.Maity, A.K., Nath, D., and Chakravorty, D., J. Phys.: Condens. Matter 8, 5717 (1996).Google Scholar
24.Powder Diffraction File No. 16–344 (JCPDS, International Centre for Diffraction Data, Newton Square, PA).Google Scholar
25.Kingery, W.D., Introduction to Ceramics (John Wiley & Sons, New York, 1967), p. 131.Google Scholar
26.Matsushita, M., Honda, K., Toyoki, H., Hayakawa, Y., and Kondo, H., J. Phys. Soc. Jpn. 55, 2618 (1986).CrossRefGoogle Scholar
27.Banerjee, S. and Chakravorty, D., Appl. Phys. Lett. 72, 1027 (1998).CrossRefGoogle Scholar
28.Roy, B., Roy, S., and Chakravorty, D., J. Mater. Res. 9, 2677 (1994).CrossRefGoogle Scholar
29.Cole, K.S. and Cole, R.H., J. Chem. Phys. 9, 341 (1941).CrossRefGoogle Scholar
30.Chakravorty, D., Appl. Phys. Lett. 24, 62 (1974).CrossRefGoogle Scholar
31.Das, G.C. and Chakravorty, D., J. Appl. Phys. 51, 3896 (1980).CrossRefGoogle Scholar
32.Kundu, T.K. and Chakravorty, D., Appl. Phys. Lett. 67, 2732 (1995).CrossRefGoogle Scholar
33.Rice, M.J. and Bernasconi, J., Phys. Rev. Lett. 29, 113 (1972).CrossRefGoogle Scholar