Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T16:27:42.311Z Has data issue: false hasContentIssue false

Growth of nanoparticulate films of Ca3Co4O9 by a microwave plasma–assisted spray process

Published online by Cambridge University Press:  18 July 2011

Ted Wangensteen*
Affiliation:
Department of Physics, University of South Florida, Tampa, Florida 33620-5700
Marek Merlak
Affiliation:
Department of Physics, University of South Florida, Tampa, Florida 33620-5700
Tara Dhakal
Affiliation:
Department of Physics, University of South Florida, Tampa, Florida 33620-5700
Pritish Mukherjee
Affiliation:
Department of Physics, University of South Florida, Tampa, Florida 33620-5700
Sarath Witanachchi
Affiliation:
Department of Physics, University of South Florida, Tampa, Florida 33620-5700
Bed Poudel
Affiliation:
GMZ Energy, Inc., Waltham, Massachusetts 02453
Giri Joshi
Affiliation:
GMZ Energy, Inc., Waltham, Massachusetts 02453
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this article, we report the use of a microwave plasma in a microwave plasma–assisted spray (MPAS) technique to grow crystalline nanoparticles of the oxide thermoelectric material Ca3Co4O9. This unique growth process allows the formation of nanoparticle coatings on substrates from an aqueous precursor of Ca and Co salts. The particle size is controlled from few tens to few hundred nanometers by varying the concentration of the precursor. The resistivity, Seebeck coefficient, and the power factor (PF) measured in the temperature range of 300–700 K for films grown by MPAS process with varying concentrations of calcium and cobalt chlorides are presented. Films with larger nanoparticles showed a trend toward higher PFs than those with smaller nanoparticles. Films with PFs as high as 220 μW/mK2 were observed to contain larger nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tritt, T. and Subramanian, M.: Thermoelectric materials, phenomena, and applications: A bird’s eye view. MRS Bull. 31, 188 (2006).CrossRefGoogle Scholar
2.Van Zeghbroeck, B.: Principles of Semiconductor Devices (University of Colorado, Boulder, CO, 2006) online text.ecee.colorado.edu/∼bart/book/book/index.htmlGoogle Scholar
3.Xu, G., Funahashi, R., Shikano, M., Matsubara, I., and Zhou, Y.: Thermoelectric properties of the Bi- and Na- substituted Ca3Co4O9 system. Appl. Phys. Lett. 80(20), 3760 (2002).CrossRefGoogle Scholar
4.Snyder, G. J. and Toberer, E.: Complex thermoelectric materials—Review article. Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
5.Bottner, H., Chen, G., and Venkatasubramanian, R.: Aspects of thin-film superlattice thermoelectric materials, devices, and applications. MRS Bull. 31, 211 (2006).CrossRefGoogle Scholar
6.Koumoto, K., Terasaki, I., and Funahashi, R.: Complex oxide materials for potential thermoelectric applications. MRS Bull. 31, 206 (2006).CrossRefGoogle Scholar
7.Tyson, T., Chen, Z., Jie, Q., Li, Q., and Tu, J.: Local structure of thermoelectric Ca3Co4O9. Phys. Rev. B 79, 024109 (2009).CrossRefGoogle Scholar
8.Venkatasubramanian, R., Slivola, E., Colpitts, T., and O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).CrossRefGoogle ScholarPubMed
9.Hyde, R., Beekman, M., Nolas, G.S., Mukherjee, P., and Witanachchi, S.: Growth and characterization of germanium-based type I clathrate thin films deposited by pulsed laser ablation, in Proceedings of the 31st International Conference on Advanced Ceramics and Composites, American Ceramics Society, Vol. 28, Issue 8 (Wiley, Hoboken, NJ, 2009), p. 211.Google Scholar
10.Bertini, L., Billquist, K., Christensen, M., Gatti, C., Holmgren, L., Iverson, B., Mueller, E., Muhammed, M., Noriega, G., Palmqvist, A., Platzek, D., Rowe, D., Saramat, A., Stiewe, C., Toprak, M., Williams, S., and Zhang, Y.: Grain size dependence of transport properties of nano-engineered thermoelectric CoSb3, in Proceedings of the 22nd International Conference on Thermoelectrics, August 21, 2003, p. 93.Google Scholar
11.Nolas, G., Sharp, J., and Goldsmid, H.: Thermoelectrics—Basic Principles and New Materials Developments (Springer-Verlag, Berlin, Heidelberg, New York, 2001).CrossRefGoogle Scholar
12.Toprak, M., Stiewe, C., Platzek, D., Williams, S., Bertini, L., Muller, E., Gatti, C., Zhang, Y., Rowe, M., and Muhammed, M.: The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3. Adv. Funct. Mater. 14(12), 1189 (2004).CrossRefGoogle Scholar
13.Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M., Chen, G., and Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).CrossRefGoogle ScholarPubMed
14.Popescu, A., Woods, L.M., Martin, J., and Nolas, G.S.: Model of transport properties of thermoelectric nanocomposite materials. Phys. Rev. B 79, 205302 (2009).CrossRefGoogle Scholar
15.Popescu, A. and Woods, L.M.: Enhanced thermoelectricity in composites by electronic structure modifications and nanostructuring. Appl. Phys. Lett. 97, 052102.1 (2010).CrossRefGoogle Scholar
16.Zebarjadi, M., Esfarjani, K., Shakouri, A., Bahk, J., Bian, Z., Zeng, G., Bowers, J., Lu, H., Zide, J., and Gossard, A.: Effect of nanoparticle scattering on thermoelectric power factor. Appl. Phys. Lett. 94, 202105 (2009).CrossRefGoogle Scholar
17.Wang, Y., Sui, Y., Cheng, J., Wang, X., and Su, W.: Comparison of the high temperature thermoelectric properties for Ag-doped and Ag-added Ca3Co4O9. J. Alloys Compd. 477, 817 (2009).CrossRefGoogle Scholar
18.Eng, H., Prellier, W., Hebert, S., Grebille, D., Mechin, L., and Mercey, B.: Influence of pulsed laser deposition growth conditions on the thermoelectric properties of Ca3Co4O9 thin films. J. Appl. Phys. 97, 013706 (2005).CrossRefGoogle Scholar
19.Hu, Y.F., Sutter, E., Si, W.D., and Li, Q.: Thermoelectric properties and microstructure of c-axis-oriented thin films on glass substrates. Appl. Phys. Lett. 87, 171912 (2005).CrossRefGoogle Scholar
20.Yin, T., Liu, D., Ou, Y., Ma, F., Xie, S., Li, J.-F., and Li, J.: Nanocrystalline thermoelectric Ca3Co4O9 ceramics by sol-gel electrospinning and spark plasma sintering. J. Phys. Chem. C 114, 10061 (2010).CrossRefGoogle Scholar
21.Zhang, Y., Zhang, J.X., Lu, Q.M., and Zhang, Q.Y.: Synthesis and characterization of Ca3Co4O9 nanoparticles by citrate sol-gel method. Mater. Lett. 60, 2443 (2006).CrossRefGoogle Scholar
22.Mitzutani, Y., Uga, Y., and Nishimoto, T.: An investigation on ultrasonic atomization. Bull. JSME 15(83), 620 (1972).CrossRefGoogle Scholar
23.Wangensteen, T., Witanachchi, S., and Mukherjee, P.: Initial studies of thermoelectric nanoparticle growth using a laser-assisted spray pyrolysis (LASP) method, Presented at 31st International Conference on Advanced Ceramics and Composites, Daytona Beach, FL (2007).Google Scholar
24.Merlak, M.: Design and characterization of microwave assisted spray deposition system: Application to Eu doped Y2O3 nano-particle coatings. Master’s Thesis, University of South Florida (2010).Google Scholar
25.Wangensteen, T., Dhakal, T., Merlak, M., Witanachchi, S., Phan, M.H., Srikanth, H., and Mukherjee, P.: Growth of uniform ZnO nanoparticles by a microwave plasma process. J. Alloys Compd. 509, 6859 (2011).CrossRefGoogle Scholar
26.Zhang, Y., Zhang, J.X., and Lu, Q.M.: Rapid synthesis of Ca2Co2O5. J. Alloys Compd. 399, 64 (2005).CrossRefGoogle Scholar
27.Kwon, O., Jo, W., Ko, K., Kim, J., Bae, S., Koo, H., Jeong, S., Kim, J., and Park, C.: Thermoelectric properties and texture evaluation of Ca3Co4O9 prepared by a cost-effective multisheet cofiring technique. J. Mater. Sci. 46(9), 2887 (2011).CrossRefGoogle Scholar
28.Shikano, M. and Funahashi, R.: Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett. 82, 1851 (2003).CrossRefGoogle Scholar
29.Cheng, J., Sui, Y., Wang, Y., Wang, X., and Su, W.: First-order phase transition characteristic of the high temperature metal-semiconductor transition in [Ca2CoO3]0.62[CoO2]. Appl. Phys. Mater. Sci. Process. 94, 911 (2008).CrossRefGoogle Scholar
30.Woods, L., Popescu, A., Martin, J., and Nolas, G.: Transport properties of thermoelectric nanocomposites, in Materials and Devices for Thermal-to-Electric Energy Conversion, edited by Yang, J., Nolas, G.S., Koumoto, K., and Grin, Y. (Mater. Res. Soc. Symp. Proc. 1166, Warrendale, PA, 2009) 1166-N05-08, p. 121.Google Scholar
31.Vineis, C., Harman, T., Calawa, S., Walsh, M., Reeder, R., Singh, R., and Shakouri, A.: Carrier concentration and temperature dependence of the electronic transport properties of epitaxial PbTe and PbTe/PbSe nanodot superlattices. Phys. Rev. B 77, 235202 (2008).CrossRefGoogle Scholar
32.Shi, L., Yao, D., Zhang, G., and Li, B.: Size dependent thermoelectric properties of silicon nanowires. Appl. Phys. Lett. 95, 063102 (2009).CrossRefGoogle Scholar
33.Ishida, A., Cao, D., Morioka, S., Inoue, Y., and Kita, T.: Seebeck effect in IV–VI semiconductor films and quantum wells. J. Electron. Mater. 38(7), 940 (2009).CrossRefGoogle Scholar
34.Amith, A.: Seebeck coefficient in N-type germanium-silicon alloys: “Competition” region. Phys. Rev. 139, A1626 (1963).Google Scholar
35.Kinemuchi, Y., Nakano, H., Mikami, M., Kobayashi, K., Watari, K., and Hotta, Y.: Enhanced boundary-scattering of electrons and phonons in nanograined zinc oxide. J. Appl. Phys. 108, 053721 (2010).CrossRefGoogle Scholar
36.Brinkman, W. and Rice, T.: Application of Gutzwiller’s variational method to the metal-insulator transition. Phys. Rev. B 2(10), 4302 (1970).CrossRefGoogle Scholar
37.Wang, Y., Sui, Y., Cheng, J., Wang, X., Su, W., and Fan, H.: Influence of Y3+ doping on the high-temperature transport mechanism and thermoelectric response of misfit-layered Ca3Co4O9. Applied Physics A 99, 451 (2010).CrossRefGoogle Scholar