Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-04T18:43:34.865Z Has data issue: false hasContentIssue false

Growth and Ripening of (Au,Ni)Sn4 Phase in Pb-Free and Pb-Containing Solders on Ni/Au Metallization

Published online by Cambridge University Press:  31 January 2011

K.Y. Lee
Affiliation:
Institute of Materials Research & Engineering, 3 Research Link, Singapore 117602
M. Li
Affiliation:
Institute of Materials Research & Engineering, 3 Research Link, Singapore 117602
K.N. Tu
Affiliation:
Department of Materials Science and Engineering, UCLA, Los Angeles, California 90095-1595
Get access

Abstract

The evolution of an interfacial microstructure between Cu/Ni/Au bond-pad metallization and Pb-free or Pb-containing solder bumps during solid-state aging was investigated. A distinctive difference between the Pb-containing and Pb-free solder bumps was observed. A continuous (Au,Ni)Sn4 intermetallic compound layer was readily detected in the Pb-containing solder bump on the bond-pad. No such layer exists in the Pb-free case; instead a large number of (Au,Ni)Sn4 particles scatter in the bulk of the solder. The different morphologies of the (Au,Ni)Sn4 have been explained on the basis of the contact angle in Young's equation and of the growth of a flat layer by ripening. A simple kinetic analysis of ripening between a set of monosize spheres and a flat surface is given to describe the layered growth having a time dependence around 0.5.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kay, P.J. and Mackay, C.A., Trans. Inst. Met. Fin. 54, 68 (1976).CrossRefGoogle Scholar
2.Kang, K., Metall. Trans. B 12B, 620 (1981).CrossRefGoogle Scholar
3.Kim, P.G., Jang, J.W., Lee, T.Y., and Tu, K.N., J. Appl. Phys. 86, 6745 (1999).Google Scholar
4.Prince, A., J. Less-Common Metals 12, 107 (1967).CrossRefGoogle Scholar
5.Mei, Z., Kaufmann, M., Eslambolchi, A., and Johnson, P., Proceedings of the 48th Electronic Components & Technology Conference (IEEE, Piscataway, NJ, 1998), p. 952.Google Scholar
6.Zhong, C.H., Yi, S., Mui, Y.C., Howe, C.P., Olsen, D., and Chen, W.T., Proceedings of the 50th Electronic Components & Technology Conference (IEEE, Piscataway, NJ, 2000), p. 151.Google Scholar
7.Lee, K.Y., Li, M., Olsen, D., Chen, W.T., Tan, T.C., and Mhaisalkar, S., Proceedings of the 51st Electronic Components & Technology Conference (IEEE, Piscataway, NJ, 2001), p. 472.Google Scholar
8.Zribi, A., Chromik, R.R., Presthus, R., Teed, K., Zavalij, L., DeVita, J., Tova, J., Cotts, E.J., Clum, J.A., Erich, R., Primavera, A., Westby, G., Coyle, R.J., and Wenger, G.M., IEEE Trans. Component Packaging Technol. 23, 383 (2000).Google Scholar
9.Minor, A.M. and Morris, J.W., Metall. Mater. Trans. A 31A, 798 (1999).Google Scholar
10.Minor, A.M. and Morris, J.W., J. Electron. Mater. 29, 1170 (2000).Google Scholar
11.Ho, C.E., Zheng, R., Luo, G.L., Lin, A.H., and Kao, C.R., J. Electron. Mater. 29, 1175 (2000).Google Scholar
12.Song, H.G., Ahn, J.P., Minor, A.M., and Morris, J.W., J. Electron. Mater. 30, 409 (2001).Google Scholar
13.Lee, K.Y. and Li, M., Metall. Mater. Trans. A 32A, 2666 (2001).Google Scholar
14.Lee, J.H., Park, J.H., Lee, Y.H., and Kim, Y.S., J. Mater. Res. 16, 1249 (2001).Google Scholar
15.Levis, K. and Mawer, A., Proceedings of the 50th Electronic Components & Technology Conference (IEEE, Piscataway, NJ, 2000), p. 1198.Google Scholar
16.Tu, K.N., Lee, T.Y, Jang, J.W., Li, L., Frear, D.R., Zeng, K., and Kivilahti, J.K., J. Appl. Phys. 89, 4843 (2001).CrossRefGoogle Scholar
17.Liu, C.M., Ho, C.E., Chen, W.T., and Kao, C.R., J. Electron. Mater. 30, 1152 (2001).CrossRefGoogle Scholar
18.Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids, 19, 35 (1961).CrossRefGoogle Scholar
19.Zener, C., J. Appl. Phys. 20, 950 (1949).Google Scholar
20.Slezov, V.V., Theory of Diffusion Decomposition of Solid Solution (Harwood Academic Publishers, Reading, U.K., 1995), pp. 112116.Google Scholar