Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T01:49:44.910Z Has data issue: false hasContentIssue false

Growth and oxidation of boron-doped diamond films

Published online by Cambridge University Press:  03 March 2011

E.N. Farabaugh
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
L. Robins
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
A. Feldman
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Curtis E. Johnson
Affiliation:
Naval Air Warfare Center, Weapons Center, China Lake, California 93555
Get access

Abstract

Boron-doped diamond films have been grown by the hot filament chemical vapor deposition process. The feed gas was a mixture of argon, bubbled through a solution of B2O3 in ethanol, and hydrogen. The highest growth rate was 0.7 μm/h. The boron concentration in the films depended on the concentration of B2O3 in the ethanol. The highest boron doping level, as measured by secondary ion mass spectroscopy, was 6300 atomic ppm. Raman spectroscopy and x-ray diffraction both confirmed the presence of crystalline diamond in the films. The frequency of the diamond Raman line decreased with increasing boron concentration. This shift may arise from an interaction of the charged carriers (holes) produced by the boron doping and the Raman-active optic phonon. The oxidation rates of doped and undoped films were measured by thermogravimetric analysis at 700 °C in flowing high purity oxygen. Films with a boron concentration of 6300 ppm oxidized at one-tenth the rate of undoped diamond. A layer of B2O3, detected on the surface of an oxidized B-doped film, is believed to act as a protective barrier that decreases the oxidation rate.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1The Properties of Diamond, edited by Field, J. E. (Academic Press, London, 1979).Google Scholar
2Simons, E. L. and Cannon, P., Nature (London) 210, 90 (1966).CrossRefGoogle Scholar
3Johnson, C. E., Hasting, M. A. S., and Weimer, W. A., J. Mater. Res. 5, 2320 (1990).CrossRefGoogle Scholar
4Alam, M. and Sun, Q., J. Mater. Res. 8, 2870 (1993).CrossRefGoogle Scholar
5Joshi, A., Nimmagadda, R., and Herrington, J., J. Vac. Sci. Technol.A 8, 2137 (1990).CrossRefGoogle Scholar
6Tankala, K., DebRoy, T., and Alam, M., J. Mater. Res. 5, 2483 (1990).CrossRefGoogle Scholar
7Alam, M. and Sun, Q., J. Mater. Sci. Lett. 12, 1389 (1993).CrossRefGoogle Scholar
8Raun, J., Kobashi, K., and Choyke, W.J., Appl. Phys. Lett. 60, 1884 (1992).CrossRefGoogle Scholar
9Venkatesan, V., Das, K., Dreifus, D. L., Fountain, G. G., Rudder, R. A., Posthill, J. B., and Markunas, R. J., in Proc. 2nd Symp. on Diamond Materials (Proceedings Volumes 9198), edited by Purdes, A. J., Meyerson, B. M., Angus, J. C., Spear, K. E., Davis, R. F., and Yoder, M. (The Electrochemical Society, Pennington, NJ, 1991), pp. 558565.Google Scholar
10Nishimura, K., Das, K., and Glass, J. T., J. Appl. Phys. 69, 3142 (1991).CrossRefGoogle Scholar
11Kawarada, H., Yokata, Y., Matsuyama, H., Sogi, T., and Hiraki, A., in Proc. 2nd Symp. on Diamond Materials (Proceedings Volumes 9198), edited by Purdes, A.J., Meyerson, B. M., Angus, J. C., Spear, K. E., Davis, R. F., and Yoder, M. (The Electrochemical Society, Pennington, NJ, 1991), pp. 420426.Google Scholar
12Miyata, K., Dreifus, D. L., Daas, K., Glass, J. T., and Kobashi, K., in Proc. 2nd Symp. on Diamond Materials (Proceedings Volumes 9198), edited by Purdes, A.J., Meyerson, B. M., Angus, J. C., Spear, K. E., Davis, R. F., and Yoder, M. (The Electrochemical Society, Pennington, NJ, 1991), pp. 543550.Google Scholar
13Grot, S. A., Hatfield, C. W., Gildenblat, G.Sh., Badzian, A. R., Badzian, T., and Messier, R., Appl. Phys. Lett. 58, 1542 (1991).CrossRefGoogle Scholar
14Gildenblat, G. Sh., Grot, S. A., Hatfield, C. W., Wronski, C. R., Badzian, A. R., Badzian, T., and Messier, R., Mater. Res. Bull. 25, 129 (1990).CrossRefGoogle Scholar
15Ramesham, R., Roppel, T., and Ellis, C., J. Electrochem. Soc. 138, 2981 (1991).CrossRefGoogle Scholar
16Mort, J., Kuhman, D., Machonkin, M., Morgan, M., Jansen, F., and Okumura, K., Appl. Phys. Lett. 55, 1121 (1989).CrossRefGoogle Scholar
17Mort, J., Machonkin, M. A., and Okumura, K., Appl. Phys. Lett. 58, 1908 (1991).CrossRefGoogle Scholar
18Okano, K., Naruki, H., Akiba, Y., Kurosu, T., Iida, M., Hirose, Y., Jpn. J. Appl. Phys. 27, L173 (1988).CrossRefGoogle Scholar
19Okano, K., Naruki, H., Akiba, Y., Kurosu, T., Iida, M., Hirose, Y., and Nakamura, T., Jpn. J. Appl. Phys. 28, 1066 (1989).CrossRefGoogle Scholar
20Okano, K., Kiyota, H., Iwasaki, T., Kurosu, T., Iida, M., and Nakamura, T., Appl. Phys. Lett. 58, 840 (1991).CrossRefGoogle Scholar
21Masood, A., Aslam, M., Tamor, M. A., and Potter, T. J., Appl. Phys. Lett. 61, 1832 (1992).CrossRefGoogle Scholar
22Fountain, G. G., Rudder, R. A., Malta, D. P., Hattangady, S. V., Alley, R. G., Hudson, G. C., Posthill, J. B., Markunas, R. J., Humphreys, T.P., Nemanich, R. J., Venkatesan, V., and Das, K., in Proc. 2nd Symp. on Diamond Materials (Proceedings Volumes 9198), edited by Purdes, A.J., Meyerson, B. M., Angus, J. C., Spear, K. E., Davis, R. F., and Yoder, M. (The Electrochemical Society, Pennington, NJ, 1991), pp. 523527.Google Scholar
23Sandhu, G. S., Swanson, M. L., and Chu, W. K., Appl. Phys. Lett. 55, 1397 (1989).CrossRefGoogle Scholar
24Spitsyn, B. V. and Alexenko, A. E., in Proc. 2nd Symp. on Diamond Materials (Proceedings Volumes 9198), edited by Purdes, A.J., Meyerson, B. M., Angus, J. C., Spear, K. E., Davis, R. F., and Yoder, M. (The Electrochemical Society, Pennington, NJ, 1991), pp. 597604.Google Scholar
25Glesner, J. W., Morrish, A. A., and Snail, K. A., J. Appl. Phys. 70, 5144 (1991).CrossRefGoogle Scholar
26Farabaugh, E. N., Feldman, A., and Robins, L. H., in Diamond Optics, edited by Feldman, A. and Holley, S. (SPIE-The International Society for Optical Engineering, Bellingham, WA, 1988), Proc. SPIE 969, pp. 2431.Google Scholar
27Secondary Ion Mass Spectrometry, edited by Wilson, R. G., Stevie, F. A. and Magee, C. W., App. E, 3 (John Wiley, New York, 1989).Google Scholar
28A 95% confidence interval on the boron and tungsten concentrations is estimated to be ±50% of the determined value, based on scientific judgment and experience with this method.Google Scholar
29Lurie, P. G. and Wilson, J. W., Surf. Sci. 65, 4768 (1977).CrossRefGoogle Scholar
30Hanke, G. and Müller, K., J. Vac. Sci. Technol A 2, 964 (1984).CrossRefGoogle Scholar
31Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
32Robertson, J., Adv. Phys. 35, 317 (1986).CrossRefGoogle Scholar