Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T19:04:56.971Z Has data issue: false hasContentIssue false

Growth and characterization of TiN/SiN(001) superlattice films

Published online by Cambridge University Press:  31 January 2011

Hans Söderberg*
Affiliation:
Division of Engineering Materials, Luleå University of Technology, SE-971 87 Luleå, Sweden
Magnus Odén
Affiliation:
Division of Engineering Materials, Luleå University of Technology, SE-971 87 Luleå, Sweden
Axel Flink
Affiliation:
Thin Film Physics Division, Linköping University, SE-581 83 Linköping, Sweden
Jens Birch
Affiliation:
Thin Film Physics Division, Linköping University, SE-581 83 Linköping, Sweden
Per O.Å. Persson
Affiliation:
Thin Film Physics Division, Linköping University, SE-581 83 Linköping, Sweden
Manfred Beckers
Affiliation:
Thin Film Physics Division, Linköping University, SE-581 83 Linköping, Sweden
Lars Hultman
Affiliation:
Thin Film Physics Division, Linköping University, SE-581 83 Linköping, Sweden
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report the layer structure and composition in recently discovered TiN/SiN(001) superlattices deposited by dual-reactive magnetron sputtering on MgO(001) substrates. High-resolution transmission electron microscopy combined with Z-contrast scanning transmission electron microscopy, x-ray reflection, diffraction, and reciprocal-space mapping shows the formation of high-quality superlattices with coherently strained cubic TiN and SiN layers for SiN thickness below 7–10 Å. For increasing SiN layer thicknesses, a transformation from epitaxial to amorphous SiNx (x ⩾ 1) occurs during growth. Elastic recoil detection analysis revealed an increase in nitrogen and argon content in SiNx layers during the phase transformation. The oxygen, carbon, and hydrogen contents in the multilayers were around the detection limit (∼0.1 at.%) with no indication of segregation to the layer interfaces. Nanoindentation experiments confirmed superlattice hardening in the films. The highest hardness of 40.4 ± 0.8 GPa was obtained for 20-Å TiN with 5-Å-thick SiN(001) interlayers, compared to monolithic TiN at 20.2 ± 0.9 GPa.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Söderberg, H., Molina-Aldareguia, J.M., Hultman, L.Odén, M.: Nanostructure formation during deposition of TiN/SiNx nanomultilayer films deposited by reactive magnetron sputtering. J. Appl. Phys. 97, 114327 2005CrossRefGoogle Scholar
2Söderberg, H., Molina-Aldareguia, J.M., Larsson, T., Hultman, L.Odén, M.: Epitaxial stabilization of cubic-SiNx in TiN/SiNx multilayers. Appl. Phys. Lett. 88, 191902 2006CrossRefGoogle Scholar
3Hu, X., Xhang, H., Dai, J., Li, G.Gu, M.: Study of the superhardness mechanism of Ti–Si–N nanocomposite films: influence of the thickness of the Si3N4 interfacial phase. J. Vac. Sci. Technol., A 23, 114 2005CrossRefGoogle Scholar
4Hultman, L., Bareño, J., Flink, A., Söderberg, H., Larsson, K., Petrova, V., Odén, M., Greene, J.E.Petrov, I.: Interface structure in superhard TiN–SiN nanolaminates and superlattices: Film growth and ab initio calculations. Phys. Rev. B 75, 155437 2007CrossRefGoogle Scholar
5Chen, Y-H., Lee, K.W., Chiou, W-A., Chung, Y-W.Keer, L.M.: Synthesis and structure of smooth, superhard TiN/SiNx multilayer coatings with an equiaxed microstructure. Surf. Coat. Technol. 146/147, 209 2001CrossRefGoogle Scholar
6Veprek, S.Reiprich, S.: A concept for the design of novel superhard coatings. Thin Solid Films 268, 64 1995CrossRefGoogle Scholar
7Veprek, S., Veprek-Heijman, M.G.J., Karvankova, P.Prochazka, J.: Different approaches to superhard coatings and nanocomposites. Thin Solid Films 476, 1 2005CrossRefGoogle Scholar
8Niederhofer, A., Bolom, T., Nesládek, P., Moto, K., Eggs, C., Patil, D.S.Veprek, S.: The role of percolation threshold for the control of the hardness and thermal stability of super- and ultrahard nanocomposites. Surf. Coat. Technol. 146/147, 183 2001CrossRefGoogle Scholar
9 JCPDS No. 4-829. International Center for Diffraction Data: ICDD, Swarthmore, PA, 2004Google Scholar
10 JCPDS No. 38-1420. International Center for Diffraction Data: ICDD, Swarthmore, PA, 2004Google Scholar
11Ljungcrantz, H., Odén, M., Hultman, L., Greene, J.E.Sundgren, J-E.: Nanoindentation studies of single-crystal (001), (011), and (111) oriented TiN layers on MgO. J. Appl. Phys. 80, 6725 1996CrossRefGoogle Scholar
12Engström, C., Berlind, T., Birch, J., Hultman, L., Ivanov, I.P., Kirkpatrick, S.R.Rohde, S.L.: Design, plasma studies, and ion assisted thin film growth in unbalanced dual target sputtering system with a solenoid coil. Vacuum 56, 107 2000CrossRefGoogle Scholar
13Söderberg, H., Birch, J., Hultman, L.Odén, M.: RHEED studies during growth of TiN/SiNx/TiN trilayers on MgO(001). Surf. Sci. 601, 2352 2007CrossRefGoogle Scholar
14Powell, C.R., Lee, N-E., Kim, Y-W.Greene, J.E.: Heteroepitaxial wurtzite and zinc-blende structure GaN grown by reactive-ion molecular-beam epitaxy: Growth kinetics, microstructure, and properties. J. Appl. Phys. 73, 189 1993CrossRefGoogle Scholar
15Aswal, D.K., Muthe, K.P., Tawde, S., Chodhury, S., Bagkar, N., Singh, A., Gupta, S.K.Yakhmi, J.V.: XPS and AFM investigations of annealing induced surface modifications of MgO single crystals. J. Cryst. Growth 236, 661 2002CrossRefGoogle Scholar
16Molina-Aldareguia, J.M.: Processing and nanoindentation behaviour of nitride multilayers. Ph.D. Thesis, University of Cambridge, Cambridge, England,,2002Google Scholar
17Windt, D.L.: IMD—Software for modeling the optical properties of multilayer films. Comput. Phys. 12, 360 1998CrossRefGoogle Scholar
18del Rio, M.S.Dejus, R.J.: XOP: Recent developments. Proc. SPIE,3448, 340 1998Google Scholar
19Bohne, W., Röhrich, J.Röschert, G.: The Berlin time-of-flight ERDA setup. Nucl. Instrum. Methods Phys. Res., Sect. B 136–138, 633 1998CrossRefGoogle Scholar
20Oliver, W.C.Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992CrossRefGoogle Scholar
21Tapfer, L.Ploog, K.: X-ray interference in ultrathin epitaxial layers: A versatile method for the structural analysis of single quantum wells and heterointerfaces. Phys. Rev. B 40, 9802 1989CrossRefGoogle Scholar
22Helmersson, U., Todorova, S., Markert, L., Barnett, S.A., Sundgren, J-E.Greene, J.E.: Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness. J. Appl. Phys. 62, 481 1987CrossRefGoogle Scholar
23Xu, J., Li, G.Gu, M.: The microstructure and mechanical properties of TaN/TiN and TaWN/TiN superlattice films. Thin Solid Films 370, 45 2000Google Scholar
24Shinn, M., Hultman, L.Barnett, S.A.: Growth, structure, and microhardness of epitaxial TiN/NbN superlattices. J. Mater. Res. 7, 901 1992CrossRefGoogle Scholar
25Söderberg, H., Giuliani, F., Hultman, L., Clegg, W.J.Odén, M.: Deformation structures in superhard TiN/SiNx nanolaminates. Thin Solid Films (2006, submitted)Google Scholar
26Sambasivan, S.Petuskey, W.T.: Phase chemistry in the Ti–Si–N system: Thermochemical review with phase stability diagrams. J. Mater. Res. 9, 2362 1994CrossRefGoogle Scholar
27Flink, A., Larsson, T., Sjölén, J., Karlsson, L.Hultman, L.: Influence of Si on the microstructure of arc evaporated (Ti,Si)N thin films; Evidence for cubic solid solutions and their thermal stability. Surf. Coat. Technol. 200, 1535 2005CrossRefGoogle Scholar
28Tapfer, L.Ploog, K.: Improved assessment of structural properties of AlxGa1−xAs/GaAs heterostructures and superlattices by double-crystal x-ray diffraction. Phys. Rev. B 33, 5565 1986CrossRefGoogle Scholar
29Dashiell, M.W., Kolodzey, J., Boucaud, P., Yam, V.Lourtioz, J-M.: Heterostructures of pseudomorphic Ge1−yCy and Ge1−x ySixCy alloys grown on Ge(001) substrates. J. Vac. Sci. Technol., A 18, 1728 2000Google Scholar
30Kioseoglou, G., Kim, S., Soo, Y.L., Chen, X., Luo, H., Kao, Y.H., Sasaki, Y., Liu, X.Furdyna, J.K.: Investigation of nanoscale structure in digital layers of Mn/GaAs and MnGa/GaAs. Appl. Phys. Lett. 80, 1150 2002CrossRefGoogle Scholar
31Kim, I.W., Li, Q., Marks, L.D.Barnett, S.A.: Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices. Appl. Phys. Lett. 78, 892 2001CrossRefGoogle Scholar
32Koehler, J.S.: Attempt to design a strong solid. Phys. Rev. B 2, 547 1970CrossRefGoogle Scholar
33Cairney, J.M., Tsukano, R., Hoffman, M.J.Yang, M.: Degradation of TiN coatings under cyclic loading. Acta Mater. 52, 3229 2004CrossRefGoogle Scholar
34Cairney, J.M., Hoffman, M.J., Munroe, P.R., Martin, P.J.Bendavid, A.: Deformation and fracture of Ti–Si–N nanocomposite films. Thin Solid Films 479, 193 2005CrossRefGoogle Scholar