Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T06:20:23.082Z Has data issue: false hasContentIssue false

Growth and Characterization of Na0.5K0.5NbO3 Thin Films on Polycrystalline Pt80Ir20 Substrates

Published online by Cambridge University Press:  31 January 2011

Xin Wang
Affiliation:
Department of Physics, Linköping University, SE-581 83 Linköping, Sweden
Sveinn Olafsson
Affiliation:
Department of Physics, Linköping University, SE-581 83 Linköping, Sweden
Lynnette D. Madsen
Affiliation:
Department of Physics, Linköping University, SE-581 83 Linköping, Sweden
Staffan Rudner
Affiliation:
Department of Physics, Linköping University, SE-581 83 Linköping, Sweden, andSwedish Defence Research Agency (FOI), Box 1165, SE-581 11 Linköping, Sweden
Ivan P. Ivanov
Affiliation:
Department of Physics, Linköping University, SE-581 83 Linköping, Sweden
Alex Grishin
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, Electrum 229, SE-164 40 Stockholm-Kista, Sweden
Ulf Helmersson
Affiliation:
Department of Physics, Linköping University, SE-581 83 Linköping, Sweden
Get access

Extract

Na0.5K0.5NbO3 thin films have been deposited onto textured polycrystalline Pt80Ir20 substrates using radio frequency magnetron sputtering. Films were grown in off- and on-axis positions relative to the target at growth temperatures of 500–700 °C and sputtering pressures of 1–7 Pa. The deposited films were found to be textured, displaying a mixture of two orientations (001) and (101). Films grown on-axis showed a prefered (001) orientation, while the off-axis films had a (101) orientation. Scanning electron microscopy showed that the morphology of the films was dependent on the substrate position and sputtering pressure. The low-frequency (10 kHz) dielectric constants of the films were found to be in the range of approximately 490–590. Hydrostatic piezoelectric measurements showed that the films were piezoelectric in the as-deposited form with a constant up to 14.5 pC/N.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Matthias, B.T., Phys. Rev. 75, 1771 (1949).CrossRefGoogle Scholar
2.Sayer, M. and Chivukula, V., in Handbook of Thin Film Process Technology, edited by Glocker, D.A. and Shah, S.I. (Institute of Physics Publishing, Bristol, U.K., 1997).Google Scholar
3.Vousden, P., Acta Crystallogr. 4, 545 (1951).CrossRefGoogle Scholar
4.Shirane, G., Newhnam, R., and Pepinski, R., Phys. Rev. 96, 581 (1954).CrossRefGoogle Scholar
5.Egerton, L. and Dillon, D.M., J. Am. Ceram. Soc. 42, 438 (1959).CrossRefGoogle Scholar
6.Jager, R.E. and Egerton, L., J. Am. Ceram. Soc. 45, 209 (1962).CrossRefGoogle Scholar
7.Egerton, L. and Bieling, C.A., Am. Ceram. Soc. Bull. 47, 1151 (1968).Google Scholar
8.Tho¨ny, S.S., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D.K., Phillips, J.M., Ramesh, R., and Wolf, R.M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 253.Google Scholar
9.Graettinger, T.M., Morris, P.A., Woolcott, R.R., Zumsteg, F.C., Chow, A.F., and Kingon, A.I., in Ferroelectric Thin Films III, edited by Meyers, E.R., Tuttle, B.A., Desu, S.B., and Larsen, P.K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 301.Google Scholar
10.Graettinger, T.M., Morris, P.A., Roshko, A., Kingon, A.I., Auciello, O., Lichtenwalner, D.J., and Chow, A.F., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D.K., Phillips, J.M., Ramesh, R., and Wolf, R.M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 265.Google Scholar
11.Derderian, G.J., Barrie, J.D., Aitchison, K.A., and Mecartney, M.L., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D.K., Phillips, J.M., Ramesh, R., and Wolf, R.M.! (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 277.Google Scholar
12.Cheng, C-H., Xu, Y., Mackenzie, J.D., Zhang, J., and Eyring, L., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M.J., Klemperer, W.G., and Brinker, C.J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 383.Google Scholar
13.Zaldo, C., Gill, D.S., Eason, R.W., Mendiola, J., and Chandler, P.J., Appl. Phys. Lett. 65, 502 (1994).CrossRefGoogle Scholar
14.Rou, S.H., Graettinger, T.M., Auciello, O., and Kingon, A.I., in Heteroepitaxy of Dissimilar Materials, edited by Farrow, R.F.C., Harbison, J.P., Peercy, P.S., and Zangwill, A. (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), p. 65.Google Scholar
15.Margolin, A.M., Surovyak, Z.S., Zakharchenko, I.N., Aleshin, V.A., and Chernysheneva, L.K., Sov. Phys. Tech. Phys. 33, 1435 (1988).Google Scholar
16.Takahashi, K., Ueda, H., Suzuki, T., and Kakegawa, K., Ferroelectrics 95, 209 (1989).CrossRefGoogle Scholar
17.Wang, X., Helmersson, U., Olafsson, S., Rudner, S., Wernlund, L-D., and Gevorgian, S., Appl. Phys. Lett. 73, 927 (1998).CrossRefGoogle Scholar
18.Doolittle, L.R., Nucl. Instrum. Methods Phys. Res. B 9, 344 (1985).CrossRefGoogle Scholar
19.Petrov, I., Ivanov, I., Orlinov, V., and Sungren, J-E., J. Vac. Sci. Technol. 11, 2733 (1993).CrossRefGoogle Scholar
20.Hoffinan, D.W., J. Vac. Sci. Technol. A 8, 3707 (1990).CrossRefGoogle Scholar
21.Hoffman, D.W., Park, J.S., and Morley, T.S., J. Vac. Sci. Technol., A 12, 1451 (1994).CrossRefGoogle Scholar
22.Tennery, V.J. and Hang, K.W., J. Appl. Phys. 39, 4749 (1968).CrossRefGoogle Scholar
23.Wang, X. and Helmersson, U. (unpublished results).Google Scholar
24.Kubo, M., Oumi, Y., Miura, R., Stirling, A., and Miyamoto, A., Phys. Rev. B 56, 13535 (1997).CrossRefGoogle Scholar
25.Zeng, H.C., Chong, T.C., Lim, L.C., Kumagai, H., and Hirano, M., J. Cryst. Growth 160, 289 (1996).CrossRefGoogle Scholar
26.Zeng, H.C., Chong, T.C., Lim, L.C., Kumagai, H., and Hirano, M., J. Cryst. Growth 160, 196 (1996).Google Scholar
27.Zheludev, I.S., Physics of Crystalline Dielectrics (Plenum Press, New York, 1971).CrossRefGoogle Scholar
28.Koo, I.K. and Desu, S.B., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M.J., Klemperer, W.G., and Brinker, C.J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1994), p. 79.Google Scholar
29.Li, J-F., Viehland, D., Lakeman, C.D.E., and Payne, D.A., J. Mater. Res. 10, 1435 (1995).CrossRefGoogle Scholar
30.Haertling, G.H., J. Am. Ceram. Soc. 50, 329 (1967).CrossRefGoogle Scholar
31.Berlincourt, D., in Ultrasonic Materials, edited by Mattiat, O.E. (Plenum Press, New York, 1971).Google Scholar