Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T17:21:16.333Z Has data issue: false hasContentIssue false

Graphene-based electronic biosensors

Published online by Cambridge University Press:  04 May 2017

Shun Mao*
Affiliation:
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
Junhong Chen*
Affiliation:
Department of Mechanical Engineering, Department of Materials Science and Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

As an atomic-thick layer material, graphene has a large specific surface area, high electron mobility, and high sensitivity to electronic perturbations from the binding of molecules, all of which are attractive properties for developing electronic sensing devices. This article focuses on graphene-based electronic sensors [field effect transistor (FET) sensors] for detecting biomolecules, including DNA, protein, and bacteria, among others. This article will cover three morphologies of graphene materials in biosensing applications: graphene nanosheet, graphene nanoribbon, and vertically-aligned graphene. The unique structure and electronic properties of graphene enable the FET sensor for the low concentration and rapid detection of biomolecules, thereby addressing the limitations of conventional optical sensing technologies such as ELISA, Western Blot, and electrochemical method. The advantages of graphene-based sensing technology are highlighted and recent progress on graphene-based electronic sensors for detecting biomolecules is reviewed and discussed.

Type
Invited Reviews
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Venkatesan Renugopalakrishnan

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Mao, S., Chang, J., Zhou, G., and Chen, J.: Nanomaterial-enabled rapid detection of water contaminants. Small 11(40), 5336 (2015).Google Scholar
Zhang, A. and Lieber, C.M.: Nano-bioelectronics. Chem. Rev. 116(1), 215 (2016).Google Scholar
Freeman, R., Finder, T., Gill, R., and Willner, I.: Probing protein kinase (CK2) and alkaline phosphatase with CdSe/ZnS quantum dots. Nano Lett. 10(6), 2192 (2010).CrossRefGoogle ScholarPubMed
Hansen, J.A., Wang, J., Kawde, A.N., Xiang, Y., Gothelf, K.V., and Collins, G.: Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J. Am. Chem. Soc. 128(7), 2228 (2006).Google Scholar
Li, Z., Wang, Y., Wang, J., Tang, Z., Pounds, J.G., and Lin, Y.: Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal. Chem. 82(16), 7008 (2010).Google Scholar
Lang, X-Y., Fu, H-Y., Hou, C., Han, G-F., Yang, P., Liu, Y-B., and Jiang, Q.: Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat. Commun. 4, 2169 (2013).Google Scholar
Liu, G., Mao, X., Phillips, J.A., Xu, H., Tan, W., and Zeng, L.: Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal. Chem. 81(24), 10013 (2009).Google Scholar
Zhao, X.J., Hilliard, L.R., Mechery, S.J., Wang, Y.P., Bagwe, R.P., Jin, S.G., and Tan, W.H.: A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 101(42), 15027 (2004).Google Scholar
Cui, Y., Wei, Q.Q., Park, H.K., and Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289 (2001).Google Scholar
Patolsky, F., Zheng, G.F., and Lieber, C.M.: Nanowire-based biosensors. Anal. Chem. 78(13), 4260 (2006).Google Scholar
Zheng, G.F., Patolsky, F., Cui, Y., Wang, W.U., and Lieber, C.M.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294 (2005).CrossRefGoogle ScholarPubMed
Allen, B.L., Kichambare, P.D., and Star, A.: Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19(11), 1439 (2007).Google Scholar
Chang, J., Mao, S., Zhang, Y., Cui, S., Steeber, D.A., and Chen, J.: Single-walled carbon nanotube field-effect transistors with graphene oxide passivation for fast, sensitive, and selective protein detection. Biosens. Bioelectron. 42, 186 (2013).Google Scholar
Star, A., Gabriel, J.C.P., Bradley, K., and Gruner, G.: Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3(4), 459 (2003).Google Scholar
Liu, Y., Dong, X., and Chen, P.: Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41(6), 2283 (2012).CrossRefGoogle ScholarPubMed
Yang, W., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J., and Braet, F.: Carbon nanomaterials in Biosensors: Should you use nanotubes or graphene? Angew. Chem., Int. Ed. 49(12), 2114 (2010).Google Scholar
Zhan, B., Li, C., Yang, J., Jenkins, G., Huang, W., and Dong, X.: Graphene field-effect transistor and its application for electronic sensing. Small 10(20), 4042 (2014).Google Scholar
Chang, J., Mao, S., Zhang, Y., Cui, S., Zhou, G., Wu, X., Yang, C-H., and Chen, J.: Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. Nanoscale 5(9), 3620 (2013).Google Scholar
Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183 (2007).CrossRefGoogle ScholarPubMed
Mao, S., Lu, G., and Chen, J.: Nanocarbon-based gas sensors: Progress and challenges. J. Mater. Chem. A 2(16), 5573 (2014).Google Scholar
He, Q., Wu, S., Yin, Z., and Zhang, H.: Graphene-based electronic sensors. Chem. Sci. 3(6), 1764 (2012).CrossRefGoogle Scholar
Chen, H., Chen, P., Huang, J., Selegard, R., Platt, M., Palaniappan, A., Aili, D., Tok, A.I.Y., and Liedberg, B.: Detection of matrilysin activity using polypeptide functionalized reduced graphene oxide field-effect transistor sensor. Anal. Chem. 88(6), 2994 (2016).CrossRefGoogle ScholarPubMed
Gao, Z., Kang, H., Naylor, C.H., Streller, F., Ducos, P., Serrano, M.D., Ping, J., Zauberman, J., Rajesh, Carpick, R.W., Wang, Y-J., Park, Y.W., Luo, Z., Ren, L., and Johnson, A.T.C.: Scalable production of sensor arrays based on high-mobility hybrid graphene field effect transistors. ACS Appl. Mater. Interfaces 8, 27546 (2016).CrossRefGoogle ScholarPubMed
Soikkeli, M., Kurppa, K., Kainlauri, M., Arpiainen, S., Paananen, A., Gunnarsson, D., Joensuu, J.J., Laaksonen, P., Prunnila, M., Linder, M.B., and Ahopelto, J.: Graphene biosensor programming with genetically engineered fusion protein monolayers. ACS Appl. Mater. Interfaces 8(12), 8257 (2016).CrossRefGoogle ScholarPubMed
Zhu, C., Du, D., and Lin, Y.: Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosens. Bioelectron. 89(Pt 1), 43 (2017).Google Scholar
Dong, X., Long, Q., Wang, J., Chan-Park, M.B., Huang, Y., Huang, W., and Chen, P.: A graphene nanoribbon network and its biosensing application. Nanoscale 3(12), 5156 (2011).CrossRefGoogle ScholarPubMed
Tan, X., Chuang, H-J., Lin, M-W., Zhou, Z., and Cheng, M.M-C.: Edge effects on the pH response of graphene nanoribbon field effect transistors. J. Phys. Chem. C 117(51), 27155 (2013).Google Scholar
Bo, Z., Mao, S., Han, Z.J., Cen, K., Chen, J., and Ostrikov, K.: Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 44(8), 2108 (2015).Google Scholar
Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., and Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652 (2007).CrossRefGoogle ScholarPubMed
Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z., and Sheehan, P.E.: Reduced graphene oxide molecular sensors. Nano Lett. 8(10), 3137 (2008).Google Scholar
Mohanty, N. and Berry, V.: Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8(12), 4469 (2008).Google Scholar
Dong, X., Shi, Y., Huang, W., Chen, P., and Li, L-J.: Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22(14), 1649 (2010).CrossRefGoogle ScholarPubMed
Dong, X., Huang, W., and Chen, P.: In situ synthesis of reduced graphene oxide and gold nanocomposites for nanoelectronics and biosensing. Nanoscale Res. Lett. 6, 60 (2011).Google Scholar
Yin, Z., He, Q., Huang, X., Zhang, J., Wu, S., Chen, P., Lu, G., Chen, P., Zhang, Q., Yan, Q., and Zhang, H.: Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors. Nanoscale 4(1), 293 (2012).CrossRefGoogle ScholarPubMed
Zhang, X., Zhang, Y., Liao, Q., Song, Y., and Ma, S.: Reduced graphene oxide-functionalized high electron mobility transistors for novel recognition pattern label-free DNA sensors. Small 9(23), 4045 (2013).Google Scholar
Cai, B., Wang, S., Huang, L., Ning, Y., Zhang, Z., and Zhang, G-J.: Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS Nano 8(3), 2632 (2014).CrossRefGoogle ScholarPubMed
Ping, J., Vishnubhotla, R., Vrudhula, A., and Johnson, A.T.C.: Scalable production of high-sensitivity, label-free DNA biosensors based on back-gated graphene field effect transistors. ACS Nano 10(9), 8700 (2016).Google Scholar
Ohno, Y., Maehashi, K., Yamashiro, Y., and Matsumoto, K.: Electrolyte-gated graphene field-effect transistors for detecting pH protein adsorption. Nano Lett. 9(9), 3318 (2009).Google Scholar
He, Q., Sudibya, H.G., Yin, Z., Wu, S., Li, H., Boey, F., Huang, W., Chen, P., and Zhang, H.: Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano 4(6), 3201 (2010).Google Scholar
Ohno, Y., Maehashi, K., and Matsumoto, K.: Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 132(51), 18012 (2010).CrossRefGoogle ScholarPubMed
He, Q., Wu, S., Gao, S., Cao, X., Yin, Z., Li, H., Chen, P., and Zhang, H.: Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5(6), 5038 (2011).Google Scholar
Chen, Y., Vedala, H., Kotchey, G.P., Audfray, A., Cecioni, S., Imberty, A., Vidal, S., and Star, A.: Electronic detection of lectins using carbohydrate-functionalized nanostructures: Graphene versus carbon nanotubes. ACS Nano 6(1), 760 (2012).Google Scholar
Kwon, O.S., Park, S.J., Hong, J-Y., Han, A.R., Lee, J.S., Lee, J.S., Oh, J.H., and Jang, J.: Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 6(2), 1486 (2012).Google Scholar
Park, S.J., Kwon, O.S., Lee, S.H., Song, H.S., Park, T.H., and Jang, J.: Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett. 12(10), 5082 (2012).Google Scholar
Kim, D-J., Sohn, I.Y., Jung, J-H., Yoon, O.J., Lee, N.E., and Park, J-S.: Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosens. Bioelectron. 41, 621 (2013).CrossRefGoogle ScholarPubMed
Kim, J., Lee, M-S., Jeon, S., Kim, M., Kim, S., Kim, K., Bien, F., Hong, S.Y., and Park, J-U.: Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures. Adv. Mater. 27(21), 3292 (2015).Google Scholar
Piccinini, E., Bliem, C., Reiner-Rozman, C., Battaglini, F., Azzaroni, O., and Knoll, W.: Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications. Biosens. Bioelectron. 92, 661 (2016).Google Scholar
Mao, S., Lu, G., Yu, K., Bo, Z., and Chen, J.: Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 22(32), 3521 (2010).Google Scholar
Mao, S., Yu, K., Lu, G., and Chen, J.: Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor. Nano Res. 4(10), 921 (2011).Google Scholar
Kim, B-Y., Sohn, I-y., Lee, D., Han, G.S., Lee, W-I., Jung, H.S., and Lee, N-E.: Ultrarapid and ultrasensitive electrical detection of proteins in a three-dimensional biosensor with high capture efficiency. Nanoscale 7(21), 9844 (2015).Google Scholar
Kwon, S.S., Yi, J., Lee, W.W., Shin, J.H., Kim, S.H., Cho, S.H., Nam, S., and Park, W.I.: Reversible and irreversible responses of defect-engineered graphene-based electrolyte-gated pH sensors. ACS Appl. Mater. Interfaces 8(1), 834 (2016).Google Scholar
Her, J-L., Pan, T-M., Lin, W-Y., Wang, K-S., and Li, L-J.: Label-free detection of alanine aminotransferase using a graphene field-effect biosensor. Sens. Actuators, B 182, 396 (2013).Google Scholar
Ghoshdastider, U., Wu, R., Trzaskowski, B., Mlynarczyk, K., Miszta, P., Gurusaran, M., Viswanathan, S., Renugopalakrishnan, V., and Filipek, S.: Molecular effects of encapsulation of glucose oxidase dimer by graphene. RSC Adv. 5(18), 13570 (2015).Google Scholar
Huang, Y., Dong, X., Shi, Y., Li, C.M., Li, L-J., and Chen, P.: Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2(8), 1485 (2010).Google Scholar
Kwak, Y.H., Choi, D.S., Kim, Y.N., Kim, H., Yoon, D.H., Ahn, S-S., Yang, J-W., Yang, W.S., and Seo, S.: Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens. Bioelectron. 37(1), 82 (2012).Google Scholar
Viswanathan, S., Narayanan, T.N., Aran, K., Fink, K.D., Paredes, J., Ajayan, P.M., Filipek, S., Miszta, P., Tekin, H.C., Inci, F., Demirci, U., Li, P., Bolotin, K.I., Liepmann, D., and Renugopalakrishanan, V.: Graphene–protein field effect biosensors: glucose sensing. Mater. Today 18(9), 513 (2015).Google Scholar
Zhang, M., Liao, C., Mak, C.H., You, P., Mak, C.L., and Yan, F.: Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci. Rep. 5, 8311 (2015).Google Scholar
Kavitha, T., Gopalan, A.I., Lee, K-P., and Park, S-Y.: Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon 50(8), 2994 (2012).Google Scholar
Ang, P.K., Li, A., Jaiswal, M., Wang, Y., Hou, H.W., Thong, J.T.L., Lim, C.T., and Loh, K.P.: Flow sensing of single cell by graphene transistor in a microfluidic channel. Nano Lett. 11(12), 5240 (2011).Google Scholar
Huang, Y., Dong, X., Liu, Y., Li, L-J., and Chen, P.: Graphene-based biosensors for detection of bacteria and their metabolic activities. J. Mater. Chem. 21(33), 12358 (2011).Google Scholar
Mannoor, M.S., Tao, H., Clayton, J.D., Sengupta, A., Kaplan, D.L., Naik, R.R., Verma, N., Omenetto, F.G., and McAlpine, M.C.: Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012).Google Scholar
Lu, G., Yu, K., Wen, Z., and Chen, J.: Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale 5(4), 1353 (2013).Google Scholar
Tamersit, K. and Djeffal, F.: Double-gate graphene nanoribbon field-effect transistor for DNA and gas sensing applications: Simulation study and sensitivity analysis. IEEE Sens. J. 16(11), 4180 (2016).Google Scholar
Min, S.K., Kim, W.Y., Cho, Y., and Kim, K.S.: Fast DNA sequencing with a graphene-based nanochannel device. Nat. Nanotechnol. 6(3), 162 (2011).Google Scholar
Mao, S., Yu, K., Cui, S., Bo, Z., Lu, G., and Chen, J.: A new reducing agent to prepare single-layer, high-quality reduced graphene oxide for device applications. Nanoscale 3(7), 2849 (2011).Google Scholar
Zhang, B. and Cui, T.: Suspended graphene nanoribbon ion-sensitive field-effect transistors formed by shrink lithography for pH/cancer biomarker sensing. J. Microelectromech. Syst. 22(5), 1140 (2013).Google Scholar
Mao, S., Yu, K., Chang, J., Steeber, D.A., Ocola, L.E., and Chen, J.: Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Sci. Rep. 3, 1696 (2013).Google Scholar
Seo, D.H., Rider, A.E., Kumar, S., Randeniya, L.K., and Ostrikou, K.: Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey. Carbon 60, 221 (2013).Google Scholar
Yu, K., Lu, G., Bo, Z., Mao, S., and Chen, J.: Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J. Phys. Chem. Lett. 2(13), 1556 (2011).CrossRefGoogle Scholar
Yu, K., Wang, P., Lu, G., Chen, K-H., Bo, Z., and Chen, J.: Patterning vertically oriented graphene sheets for nanodevice applications. J. Phys. Chem. Lett. 2(6), 537 (2011).Google Scholar
Basu, J. and RoyChaudhuri, C.: Graphene nanogrids FET immunosensor: Signal to noise ratio enhancement. Sensors 16(10), 1481 (2016).Google Scholar
Mackin, C. and Palacios, T.: Large-scale sensor systems based on graphene electrolyte-gated field-effect transistors. Analyst 141(9), 2704 (2016).Google Scholar