Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:54:15.457Z Has data issue: false hasContentIssue false

Graphene oxide nanocomposites for potential wearable solar cells—A review

Published online by Cambridge University Press:  09 June 2016

Raul Simões*
Affiliation:
Center for Mechanical Technology and Automation, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Victor Neto
Affiliation:
Center for Mechanical Technology and Automation, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

With the emergence of flexible/stretchable electronics, flexible solar cells (SCs) are able to attract much academic and industrial attention due to its advantages of lightweight, foldability, low cost, and extensive applications. Wearable technology has become a hot topic in the tech industry in this few years, shirts that read wearer's biological and physiological information are just beginning to make their way into society and will change the way that we interact with technology. The high strength and good electronic properties of graphene fiber make it a good candidate for some specific applications, such as wearable SCs, since it can be obtained at relatively low cost and it is amongst the strongest commercial yarns in existence. In this review, a summarized state of the art regarding wearable SCs is presented including several applications of graphene and its derivatives with their remarkable unconventional applications.

Type
Reviews
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zou, D., Wang, D., Chu, Z., Lv, Z., and Fan, X.: Fiber-shaped flexible solar cells. Coord. Chem. Rev. 254, 11691178 (2010).Google Scholar
Simões, R. and Neto, V.F.: Diamond and other carbon related materials applications in photovoltaic solar cells. IEEE International Conference on Electro/Information Technology (EIT), 15 (2013).Google Scholar
Barkhouse, D.A.R., Gunawan, O., Gokmen, T., Todorov, T.K., and Mitzi, D.B.: Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell. Prog. Photovolt. Res. Appl. 20, 611 (2012).CrossRefGoogle Scholar
Ellmer, K.: Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 6, 809817 (2012).Google Scholar
Yeh, C-L., Hsu, H-R., Chen, S-H., and Liu, Y-S.: Near infrared enhancement in CIGS-based solar cells utilizing a ZnO: H window layer. Opt. Express 20(Suppl 6), A806A811 (2012).Google Scholar
Pern, F.J., Yan, F., Zaunbrecher, K., To, B., Perkins, J., and Noufi, R.: Investigation of some transparent metal oxides as damp heat protective coating for CIGS solar cells. Proc. SPIE 8472, Reliab. Photovolt. Cells, Modul. Components, Syst. V 84720I (2012). doi: 10.1117/12.930539.Google Scholar
Zhu, H., Wei, J., Wang, K., and Wu, D.: Applications of carbon materials in photovoltaic solar cells. Sol. Energ. Mater. Sol. Cell. 93, 14611470 (2009).Google Scholar
Cheng, H., Hu, C., Zhao, Y., and Qu, L.: Graphene fiber: A new material platform for unique applications. NPG Asia Mater. 6, e113 (2014).Google Scholar
Lee, M., Lee, K., Kim, S., Lee, H., Park, J., Choi, K., Kim, H., Kim, D., Lee, D., Nam, S., and Park, J.: High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13, 28142821 (2013).Google Scholar
Lv, Z., Yu, J., Wu, H., Shang, J., Wang, D., Hou, S., Fu, Y., Wu, K., and Zou, D.: Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array. Nanoscale 4, 1248 (2012).CrossRefGoogle ScholarPubMed
Pagliaro, M., Palmisano, G., and Ciriminna, R.: Flexible Solar Cells (Wiley-VCH, Dresden, 2008); p. 880891.Google Scholar
Matsuyama, T., Wakisaka, K., Kameda, M., Tanaka, M., Matsuoka, T., Tsuda, S., Nakano, S., Kishi, Y., and Kuwano, Y.: Preparation of high-quality n-type poly-Si films by the solid phase crystallization (SPC) method. Jpn. J. Appl. Phys. 29, 2327 (1990).Google Scholar
Toivola, M., Halme, J., Miettunen, K., Aitola, K., and Lund, P.D.: Nanostructured dye solar cells on flexible substrates—Review. Int. J. Energy Res. 33, 11451160 (2009).Google Scholar
He, Y., Chen, W., Gao, C., Zhou, J., Li, X., and Xie, E.: An overview of carbon materials for flexible electrochemical capacitors. Nanoscale 5, 87998820 (2013).Google Scholar
Kang, M.G., Park, N-G., Ryu, K.S., Chang, S.H., and Kim, K-J.: A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate. Sol. Energy Mater. Sol. Cells 90, 574581 (2006).Google Scholar
Schubert, M.B. and Werner, J.H.: Flexible solar cells for clothing. Mater. Today 9, 4250 (2006).Google Scholar
Kaltenbrunner, M., White, M.S., Głowacki, E.D., Sekitani, T., Someya, T., Sariciftci, N.S., and Bauer, S.: Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012).Google Scholar
Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J-H., Kim, P., Choi, J-Y., and Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706710 (2009).Google Scholar
Park, H., Rowehl, J., Kim, K.K., Bulovic, V., and Kong, J.: Doped graphene electrodes for organic solar cells. Nanotechnology 21, 505204 (2010).Google Scholar
He, R.X., Lin, P., Liu, Z.K., Zhu, H.W., Zhao, X.Z., Chan, H.L.W., and Yan, F.: Solution-gated graphene field effect transistors integrated in microfluidic systems and used for flow velocity detection. Nano Lett. 12, 14041409 (2012).Google Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., and Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 13121314 (2009).Google Scholar
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y., Kim, Y-J., Kim, K.S., Özyilmaz, B., Ahn, J-H., Hong, B.H., and Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574578 (2010).Google Scholar
Liu, Z., Li, J., and Yan, F.: Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 25, 42964301 (2013).Google Scholar
Ito, S., Ha, N-L.C., Rothenberger, G., Liska, P., Comte, P., Zakeeruddin, S.M., Péchy, P., Nazeeruddin, M.K., and Gratzel, M.: High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem. Commun. 38, 40044006 (2006).Google Scholar
Park, J.H., Jun, Y., Yun, H-G., Lee, S-Y., and Kang, M.G.: Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate. J. Electrochem. Soc. 155, 145149 (2008).Google Scholar
Fan, K., Peng, T., Chai, B., Chen, J., and Dai, K.: Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible dye-sensitized solar cells. Electrochim. Acta 55, 52395244 (2010).Google Scholar
Yamaguchi, T., Tobe, N., Matsumoto, D., Nagai, T., and Arakawa, H.: Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Sol. Energy Mater. Sol. Cells 94, 812816 (2010).Google Scholar
Huang, F., Chen, D., Li, Q., Caruso, R.A., and Cheng, Y-B.: Construction of nanostructured electrodes on flexible substrates using pre-treated building blocks. Appl. Phys. Lett. 100, 123102 (2012).Google Scholar
Weerasinghe, H.C., Sirimanne, P.M., Simon, G.P., and Cheng, Y-B.: Cold isostatic pressing technique for producing highly efficient flexible dye-sensitised solar cells on plastic substrates. Prog. Photovolt. Res. Appl. 20, 321332 (2012).Google Scholar
Kim, Y., Cook, S., Tuladhar, S.M., Choulis, S.A., Nelson, J., Durrant, J.R., Bradley, D.D.C., Giles, M., McCulloch, I., Ha, C-S., and Ree, M.: A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: Fullerene solar cells. Nat. Mater. 5, 197203 (2006).Google Scholar
Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Jia, Y., Li, Z., Li, X., and Wu, D.: Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 22, 27432748 (2010).Google Scholar
Kopelevich, Y. and Esquinazi, P.: Graphene physics in graphite. Adv. Mater. 19, 45594563 (2007).Google Scholar
Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., and Seal, S.: Graphene based materials: Past, present and future. Prog. Mater. Sci. 56, 11781271 (2011).Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666669 (2004).Google Scholar
Bourlinos, A.B., Georgakilas, V., Zboril, R., Sterioti, T., and Stubos, A.K.: Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5, 18411845 (2009).Google Scholar
Cui, X., Zhang, C., Hao, R., and Hou, Y.: Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 3, 21182126 (2011).Google Scholar
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 15581565 (2007).CrossRefGoogle Scholar
Eda, G., Fanchini, G., and Chhowalla, M.: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270274 (2008).Google Scholar
Kang, F., Leng, Y., and Zhang, T-Y.: Influences of H2O2 on synthesis of H2SO4-GICs. J. Phys. Chem. Solids 57, 889892 (1996).Google Scholar
Kang, F., Zhang, T-Y., and Leng, Y.: Electrochemical behavior of graphite in electrolyte of sulfuric and acetic acid. Carbon 35, 11671173 (1997).Google Scholar
Pan, Y-X., Yu, Z-Z., Ou, Y-C., and Hu, G-H.: A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization. J. Polym. Sci., Part B: Polym. Phys. 38, 16261633 (2000).Google Scholar
Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., and Dai, H.: Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 3, 538542 (2008).Google Scholar
Somani, P.R., Somani, S.P., and Umeno, M.: Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430, 5659 (2006).Google Scholar
Cao, H., Yu, Q., Colby, R., Pandey, D., Park, C.S., Lian, J., Zemlyanov, D., Childres, I., Drachev, V., Stach, E.A., Hussain, M., Li, H., Pei, S.S., and Chen, Y.P.: Large-scale graphitic thin films synthesized on Ni and transferred to insulators: Structural and electronic properties. J. Appl. Phys. 107, 120 (2010).Google Scholar
Bhaviripudi, S., Jia, X., Dresselhaus, M.S., and Kong, J.: Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 10, 41284133 (2010).Google Scholar
Chae, S.J., Güneş, F., Kim, K.K., Kim, E.S., Han, G.H., Kim, S.M., Shin, H., Yoon, S.M., Choi, J.Y., Park, M.H., Yang, C.W., Pribat, D., and Lee, Y.H.: Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 21, 23282333 (2009).Google Scholar
Lee, S., Lee, K., and Zhong, Z.: Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett. 10, 47024707 (2010).Google Scholar
Wang, X., Li, J., Zhong, Q., Zhong, Y., and Zhao, M.: Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10, 490493 (2010).Google Scholar
Malesevic, A., Vitchev, R., Schouteden, K., Volodin, A., Zhang, L., Tendeloo, G.V., Vanhulsel, A., and Haesendonck, C.V.: Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19, 305604 (2008).Google Scholar
Vitchev, R., Malesevic, A., Petrov, R.H., Kemps, R., Mertens, M., Vanhulsel, A., and Van Haesendonck, C.: Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition. Nanotechnology 21, 095602 (2010).Google Scholar
Zhu, M., Wang, J., Holloway, B.C., Outlaw, R.A., Zhao, X., Hou, K., Shutthanandan, V., and Manos, D.M.: A mechanism for carbon nanosheet formation. Carbon 45, 22292234 (2007).Google Scholar
Forbeaux, I., Themlin, J-M., and Debever, J-M.: Heteroepitaxial graphite on 6H—SiC(0001): Interface formation through conduction-band electronic structure. Phys. Rev. B: Condens. Matter Mater. Phys. 58, 1639616406 (1998).Google Scholar
Hass, J., de Heer, W., and Conrad, E.H.: The growth and morphology of epitaxial multilayer graphene. J. Phys.: Condens. Matter 20, 323202 (2008).Google Scholar
de Heer, W., Berger, C., Wu, X., First, P.N., Conrad, E.H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M., and Martinez, G.: Epitaxial graphene. Solid State Commun. 143, 92100 (2007).Google Scholar
Varchon, F., Feng, R., Hass, J., Li, X., Nguyen, B.N., Naud, C., Mallet, P., Veuillen, J.Y., Berger, C., Conrad, E.H., and Magaud, L.: Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 99, 126805 (2007).Google Scholar
Penuelas, J., Ouerghi, A., Lucot, D., David, C., Gierak, J., Estrade-Szwarckopf, H., and Andreazza-Vignolle, C.: Surface morphology and characterization of thin graphene films on SiC vicinal substrate. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 33408 (2009).Google Scholar
Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., and Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282286 (2006).Google Scholar
Verdejo, R., Barroso-Bujans, F., Rodriguez-Perez, M.A., de Saja, J., and Lopez-Manchado, M.A.: Functionalized graphene sheet filled silicone foam nanocomposites. J. Mater. Chem. 18, 22212226 (2008).Google Scholar
Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonson, M., Adamson, D.H., Robert, K., Car, R., Seville, D.A., and Aksay, I.A.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 85358539 (2006).Google Scholar
Gilje, S., Han, S., Wang, M., Wang, K.L., and Kaner, R.B.: A chemical route to graphene for device applications. Nano Lett. 7, 33943398 (2007).Google Scholar
Gómez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., and Kern, K.: Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 34993503 (2007).Google Scholar
Hummers, W.S. and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).Google Scholar
Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., and Chen, Y.: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463470 (2008).Google Scholar
Lee, C-G., Park, S., Ruoff, R.S., and Dodabalapur, R.S.: Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl. Phys. Lett. 95, 023304 (2009).CrossRefGoogle Scholar
Bourlinos, A.B., Gournis, D., Petridis, D., Szabo, T., Szeri, A., and Dékány, I.: Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 60506055 (2003).Google Scholar
Shin, H.J., Kim, K.K., Benayad, A., Yoon, S.M., Park, H.K., Jung, I.S., Jin, M.H., Jeong, H.K., Kim, J.M., Choi, J.Y., and Lee, Y.H.: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19, 19871992 (2009).Google Scholar
Paredes, J.I., Villar-Rodil, S., Martínez-Alonso, A., and Tascón, J.M.D.: Graphene oxide dispersions in organic solvents. Langmuir 24, 1056010564 (2008).Google Scholar
Li, D., Muller, M.B., Gilje, S., Kaner, S., and Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101105 (2008).Google Scholar
Ramos, M., Rispens, M.T., Van Duren, M.T., Hummelen, J.C., and Janssen, R.J.: Photoinduced electron transfer and photovoltaic devices of a conjugated polymer with pendant fullerenes [4]. J. Am. Chem. Soc. 123, 67146715 (2001).Google Scholar
Cai, W., Piner, R.D., Stadermann, F.J., Park, S., Shaibat, M., Ishii, Y., Yang, D., Velamakanni, A., An, S.J., Stoller, M., An, J., Chen, D., and Ruoff, R.S.: Synthesis and solid-state NMR structural characterization of 13C-Labeled graphite oxide. Science 321, 18151817 (2008).Google Scholar
Gao, W., Alemany, L.B., Ci, L.B., and Ajayan, P.M.: New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403408 (2009).Google Scholar
He, H., Klinowski, J., Forster, M., and Lerf, A.: A new structural model for graphite oxide. Chem. Phys. Lett. 287, 5356 (1998).Google Scholar
Lerf, A., He, H., Forster, M., and Klinowski, J.: Structure of graphite oxide revisited. J. Phys. Chem. B 102, 44774482 (1998).Google Scholar
Szabó, T., Berkesi, O., Forgó, P., Josepovits, K., Sanakis, Y., Petridis, D., and Dékány, I.: Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 27402749 (2006).Google Scholar
Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., and Ruoff, R.S.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155158 (2006).Google Scholar
Zalan, Z., Lazar, L., and Fueloep, F.: Chemistry of hydrazinoalcohols and their heterocyclic derivatives. Part 1. Synthesis of hydrazinoalcohols. Curr. Org. Chem. 9(4), 357376 (2005).Google Scholar
Wang, S., Chia, P.J., Chua, L.L., Zhao, L.H., Png, R.Q., Sivaramakrishnan, S., Zhou, M., Goh, R.G.S., Friend, R.H., Wee, A.T.S., and Ho, P.K.H.: Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Adv. Mater. 20, 34403446 (2008).Google Scholar
Wu, Z-S., Ren, W., Gao, L., Liu, B., Jiang, C., and Cheng, H-M.: Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47, 493499 (2009).Google Scholar
Fan, X., Peng, W., Li, Y., Li, X., Wang, S., Zhang, G., and Zhang, F.: Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater. 20, 44904493 (2008).Google Scholar
McAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud'homme, R.K., and Aksay, I.A.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 43964404 (2007).Google Scholar
Dubin, S., Gilje, S., Wang, K., Tung, V.C., Cha, K., Hall, A.S., Farrar, J., Varshneya, R., Yang, Y., and Kaner, R.B.: A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4, 38453852 (2010).Google Scholar
Stankovich, S., Piner, R.D., Nguyen, S.T., and Ruoff, R.S.: Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44, 33423347 (2006).Google Scholar
Xu, Y., Liu, Z., Zhang, X., Wang, Y., Tian, J., Huang, Y., Ma, Y., Zhang, X., and Chen, Y.: A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 21, 12751279 (2009).Google Scholar
Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., and Haddon, R.C.: Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 77207721 (2006).Google Scholar
Yang, H., Shan, C., Li, F., Han, D., Zhang, Q., and Niu, L.: Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem. Commun. 38803882 (2009). doi: 10.1039/b905085j.Google Scholar
Liu, Z., Robinson, J.T., Sun, X., and Dai, H.: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 1087610877 (2008).Google Scholar
Veca, L.M., Lu, F., Meziani, M.J., Cao, L., Zhang, P., Qi, G., Qu, L., Shrestha, M., and Sun, Y-P.: Polymer functionalization and solubilization of carbon nanosheets. Chem. Commun. 25652567 (2009). doi: 10.1039/b900590k.Google Scholar
Mohanty, N. and Berry, V.: Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 44694476 (2008).Google Scholar
Yang, Y., Wang, J., Zhang, J., Liu, J., Yang, X., and Zhao, H.: Exfoliated graphite oxide decorated by PDMAEMA chains and polymer particles. Langmuir 25, 1180811814 (2009).Google Scholar
Fang, M., Wang, K., Lu, H., Yang, Y., and Nutt, S.: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19, 7098 (2009).Google Scholar
Lee, S.H., Dreyer, D.R., An, J., Velamakanni, A., Piner, R.D., Park, S., Zhu, Y., Kim, S.O., Bielawski, C.W., and Ruoff, R.S.: Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol. Rapid Comm. 31, 281288 (2010).Google Scholar
Bai, H., Xu, Y., Zhao, L., Li, C., and Shi, G.: Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun. 16671669 (2009). doi: 10.1039/b821805f.Google Scholar
Chunder, A., Liu, A., and Zhai, L.: Reduced graphene oxide/poly(3-hexylthiophene) supramolecular composites. Macromol. Rapid Commun. 31, 380384 (2010).Google Scholar
Qi, X., Pu, K.Y., Zhou, X., Li, H., Liu, B., Boey, F., Huang, W., and Zhang, H.: Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. Small 6, 663669 (2010).Google Scholar
Hao, R., Qian, W., Zhang, L., and Hou, Y.: Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chem. Commun. 48, 65766578 (2008). doi: 10.1039/b816971c.Google Scholar
Chunder, A., Pal, T., Khondaker, S.I., and Zhai, L.: Reduced graphene oxide/copper phthalocyanine composite and its optoelectrical properties. J. Phys. Chem. C 114, 1512915135 (2010).Google Scholar
Geng, J. and Jung, H.T.: Porphyrin functionalized graphene sheets in aqueous suspensions: From the preparation of graphene sheets to highly conductive graphene films. J. Phys. Chem. C 114, 82278234 (2010).Google Scholar
Wojcik, A. and Kamat, P.V.: Reduced graphene oxide and porphyrin. An interactive affair in 2-D. ACS Nano 4, 66976706 (2010).Google Scholar
Su, Q., Pang, S., Alijani, V., Li, C., Feng, X., and Müllen, K.: Composites of graphene with large aromatic molecules. Adv. Mater. 21, 31913195 (2009).Google Scholar
Yang, Q., Pan, X., Huang, F., and Li, F.: Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. J. Phys. Chem. C 114, 38113816 (2010).Google Scholar
Lu, C.H., Yang, H.H., Zhu, C.L., Chen, X., and Chen, G.N.: A graphene platform for sensing biomolecules. Angew. Chem., Int. Ed. 48, 47854787 (2009).Google Scholar
Luo, Z., Vora, P.M., Mele, E.J., Johnson, A.T.C., and Kikkawa, J.M.: Photoluminescence and band gap modulation in graphene oxide. Appl. Phys. Lett. 94, 111909 (2009).Google Scholar
Rothberg, L.J. and Lovinger, A.J.: Status of and prospects for organic electroluminescence. J. Mater. Res. 11, 31743187 (1996).Google Scholar
Jung, I., Pelton, M., Piner, R., Dikin, D.A., Stankovich, S., Watcharotone, S., Hausner, M., and Ruoff, R.S.: Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7, 35693575 (2007).Google Scholar
Lambacher, A. and Fromherz, P.: Fluorescence interference-contrast microscopy on oxidized silicon using a monomolecular dye layer. Appl. Phys. A: Mater. Sci. Process. 63, 207216 (1996).Google Scholar
Ni, Z.H., Wang, H.M., Kasim, J., Fan, H.M., Yu, T., Wu, Y.H., Feng, Y.P., and Shen, Z.X.: Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 27582763 (2007).Google Scholar
Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Ronan, J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Zhiming, W., McGovern, I.T., Duesberg, G.S., and Coleman, J.N.: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 36113620 (2009). doi: 10.1021/ja807449u.Google Scholar
Treossi, E., Melucci, M., Liscio, A., Gazzano, M., Samorì, P., and Palermo, V.: High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching. J. Am. Chem. Soc. 131, 1557615577 (2009).Google Scholar
Paredes, J.I., Villar-Rodil, S., Solís-Fernández, P., Martínez-Alonso, A., and Tascón, J.M.D.: Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 25, 59575968 (2009).Google Scholar
Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F., and Zettl, A.: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 35823586 (2008).Google Scholar
Gass, M.H., Bangert, U., Bleloch, A.L., Wang, P., Nair, R.R., and Geim, A.K.: Free-standing graphene at atomic resolution. Nat. Nanotechnol. 3, 676681 (2008).Google Scholar
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Jing, K.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 3035 (2009).Google Scholar
Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., and Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351355 (2008).Google Scholar
Peng, X. and Ahuja, R.: Symmetry breaking induced bandgap in epitaxial graphene layers on SiC. Nano Lett. 8, 44644468 (2008).Google Scholar
Zhou, S.Y., Gweon, G-H., Fedorov, V., First, P.N., de Heer, W., Lee, D-H., Guinea, F., Castro Neto, H., and Lanzara, A.: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6, 770775 (2007).Google Scholar
Kim, S., Ihm, J., Choi, H.J., and Son, Y.W.: Origin of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys. Rev. Lett. 100, 176802 (2008).Google Scholar
De Arco, L. and Zhang, Y.: Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition. IEEE Transactions on Nanotechnology 8(2), 135138 (2009).Google Scholar
Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y.P., and Pei, S.S.: Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008).Google Scholar
Li, X., Cai, W., Colombo, L., and Ruoff, R.S.: Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 42684272 (2009).Google Scholar
Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., Dos Santos, J., Lopes, M.B., Nilsson, J., Guinea, F., Geim, A.K., and Neto, A.H.C.: Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 2016802 (2007).Google Scholar
Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photonics 1, 97105 (2007).Google Scholar
Wang, F., Zhang, Y., Tian, C., Girit, C., Zettl, A., Crommie, M., and Shen, Y.R.: Gate-variable optical transitions in graphene. Science 320, 206209 (2008).Google Scholar
San-Jose, P., Prada, E., McCann, E., and Schomerus, H.: Pseudospin valve in bilayer graphene: Towards graphene-based pseudospintronics. Phys. Rev. Lett. 102, 247204 (2009).Google Scholar
Nair, R.R., Grigorenko, A.N., Blake, P., Novoselov, K.S., Booth, T.J., Peres, N.M.R., Stauber, T., and Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).Google Scholar
Kravets, V.G., Grigorenko, A.N., Nair, R.R., Blake, P., Anissimova, S., Novoselov, K.S., and Geim, A.K.: Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B: Condens. Matter Mater. Phys. 81, 155413 (2010).Google Scholar
Xia, F., Mueller, T., Golizadeh-Mojarad, R., Freitage, M., Lin, Y.M., Tsang, J., Perebeinos, V., and Avouris, P.: Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 10391044 (2009).Google Scholar
Rana, F., George, P.A., Strait, J.H., Dawlaty, J., Shivaraman, S., Chandrashekhar, M., and Spencer, M.G.: Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 115447 (2009).Google Scholar
Park, S. and Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217224 (2009).Google Scholar
Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., and Novoselov, K.S.: Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science 323, 610613 (2009).Google Scholar
Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photonics 4, 611622 (2010).Google Scholar
Gokus, T., Nair, R.R., Bonetti, A., Bohmler, M., Lombardo, A., Novoselov, K.S., Geim, A.K., Ferrari, A.C., and Hartschuh, A.: Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 39633968 (2009).Google Scholar
Sheats, J.R., Antoniadis, H., Hueschen, M., Leonard, W., Miller, J., Moon, R., Roitman, D., and Stocking, A.: Organic electroluminescent devices. Science 273, 884888 (1996).Google Scholar
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902907 (2008).Google Scholar
Nika, D.L., Pokatilov, E.P., Askerov, A.S., and Balandin, A.A.: Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 155413 (2009).Google Scholar
Jiang, J-W., Lan, J., Wang, J-S., and Li, B.: Isotopic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism. J. Appl. Phys. 107, 054314 (2010).Google Scholar
Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385388 (2008).Google Scholar
Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., and Lau, C.N.: Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008).Google Scholar
Seol, J.H., Jo, I., Moore, A.L., Lindsay, L., Aitken, Z.H., Pettes, M.T., Li, X., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R.S., and Shi, L.: Two-dimensional phonon transport in supported graphene. Science 328, 213216 (2010).Google Scholar
Schwamb, T., Burg, B.R., Schirmer, N.C., and Poulikakos, D.: An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Nanotechnology 20, 405704 (2009).Google Scholar
Tsoukleri, G., Parthenios, J., Papagelis, K., Jalil, R., Ferrari, A.C., Geim, A.K., Novoselov, K.S., and Galiotis, C.: Subjecting a graphene monolayer to tension and compression. Small 5, 23972402 (2009).Google Scholar
Lee, C., Wei, X.D., Li, Q.Y., Carpick, R., Kysar, J.W., and Hone, J.: Elastic and frictional properties of graphene. Phys. Status Solidi 246, 25622567 (2009).Google Scholar
O'Connor, B., Pipe, K.P., and Shtein, M.: Fiber based organic photovoltaic devices. Appl. Phys. Lett. 92, 193306 (2008).Google Scholar
Lee, M., Eckert, R.D., Forberich, K., Dennler, G., Brabec, C.J., and Gaudiana, R.: Solar power wires based on organic photovoltaic materials. Science 324, 232235 (2009).Google Scholar
Fan, X., Chu, Z.Z., Wang, F.Z., Zhang, C., Chen, L., Tang, Y.W., and Zou, D.C.: Wire-shaped flexible dye-sensitized solar cells. Adv. Mater. 20, 592595 (2008).Google Scholar
Wang, H., Liu, Y., Huang, H., Zhong, M., Shen, H., Wang, Y., and Yang, H.: Low resistance dye-sensitized solar cells based on all-titanium substrates using wires and sheets. Appl. Surf. Sci. 255, 90209025 (2009).Google Scholar
Chen, T., Wang, S., Yang, Z., Feng, Q., Sun, X., Li, L., Wang, Z.S., and Peng, H.: Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem., Int. Ed. 50, 18151819 (2011).Google Scholar
Xiang, C., Young, C.C., Wang, X., Yan, Z., Hwang, C.C., Cerioti, G., Lin, J., Kono, J., Pasquali, M., and Tour, J.M.: Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. Adv. Mater. 25, 45924597 (2013).Google Scholar
Cai, X., Peng, M., Yu, X., Fu, Y., and Zou, D.: Flexible planar/fiber-architectured supercapacitors for wearable energy storage. J. Mater. Chem. C 2, 1184 (2014).Google Scholar
Meng, Y., Zhao, Y., Hu, C., Cheng, H., Hu, Y., Zhang, Z., Shi, G., and Qu, L.: All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25, 23262331 (2013).Google Scholar
Kim, J., Cote, L.J., Kim, F., and Huang, J.: Visualizing graphene based sheets by fluorescence quenching microscopy. J. Am. Chem. Soc. 132, 260267 (2010).Google Scholar
Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).Google Scholar