Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T21:55:57.023Z Has data issue: false hasContentIssue false

Gas-phase particle size distributions and lead loss during spray pyrolysis of (Bi,Pb)–Sr–Ca–Cu–O

Published online by Cambridge University Press:  03 March 2011

Abhijit S. Gurav
Affiliation:
Department of Chemical Engineering, Center for Micro-Engineered Ceramics, University of New Mexico, Albuquerque, New Mexico 87131-6041
Toivo T. Kodas*
Affiliation:
Department of Chemical Engineering, Center for Micro-Engineered Ceramics, University of New Mexico, Albuquerque, New Mexico 87131-6041
Jorma Joutsensaari
Affiliation:
VTT Aerosol Technology Group, Technical Research Center of Finland (VTT), P.O. Box 1401, FIN-02044 VTT, Finland
Esko I. Kauppincn
Affiliation:
VTT Aerosol Technology Group, Technical Research Center of Finland (VTT), P.O. Box 1401, FIN-02044 VTT, Finland
Riitta Zilliacus
Affiliation:
Chemical Technology. Technical Research Center of Finland (VTT), P.O. Box 1401, FIN-02044 VTT, Finland
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Gas-phase particle size distributions and lead loss were measured during formation of (Bi,Pb)-Sr-Ca-Cu-O and pure PbO particles by spray pyrolysis at different temperatures. A differential mobility analyzer (DMA) in conjunction with a condensation particle counter (CPC) was used to monitor the gas-phase particle size distributions, and a Berner-type low-pressure impactor was used to obtain mass size distributions and size-classified samples for chemical analysis. For (Bi,Pb)-Sr-Ca-Cu-O, as the processing temperature was raised from 200 to 700 °C, the number average particle size decreased due to metal nitrate decomposition, intraparticle reactions forming mixed-metal oxides and particle densification. The geometric number mean particle diameter was 0.12 μm at 200 °C and reduced to 0.08 and 0.07 μm, respectively, at 700 and 900 °C. When the reactor temperature was raised from 700 and 800 °C to 900 °C, a large number (∼107 no./cm3) of new ultrafine particles were formed from PbO vapor released from the particles and the reactor walls. Particles made at temperatures up to 700 °C maintained their initial stoichiometry over the whole range of particle sizes monitorcd; however, those made at 800 °C and above were heavily depleted in lead in the size range 0.5–5.0 μm. The evaporative losses of lead oxide from (Bi,Pb)-Sr-Ca-Cu-O particles were compared with the losses from PbO particles to gain insight into the pathways involved in lead loss and the role of intraparticle processes in controlling it.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. W., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
2Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
3Sheng, Z. Z. and Hermann, A. M., Nature (London) 332, 55 (1988).CrossRefGoogle Scholar
4Ward, T. L., Lyons, S. W., Kodas, T. T., Brynestad, J., Kroeger, D. M., and Hsu, H., Physica C 200, 31 (1992).CrossRefGoogle Scholar
5Tohge, N., Tatsumisago, M., Minami, T., Okuyama, K., Arai, K., Inada, Y., and Kousaka, Y., J. Mater. Sci.: Materials in Electronics 1, 46 (1990).Google Scholar
6Tripathi, R. B. and Johnson, D. W. Jr., Mater. Lett. 10, 118 (1990).CrossRefGoogle Scholar
7Sunshine, S. A., Siegriest, T., Schneemyer, L. F., Murphy, L. F., Cava, R. J., Batlogg, B., R.B. van Dover, Fleming, R. M., Glarum, S. H., Nakahara, S., Zahurak, S. M., Waszczak, J. V., Marshall, J. H., Marsh, P., Rupp, L. W. Jr., and Peck, W. F., Phys. Rev. B 38, 893 (1988).CrossRefGoogle Scholar
8Takano, A., Yoshimoto, M., and Koinuma, H., Appl. Phys. Lett. 55, 798 (1989).CrossRefGoogle Scholar
9Ramakrishna, B. L., Barry, J. C., Iqbal, Z., Ong, E. W., Bose, A., and Eckhardt, H., Physica C 158, 203 (1989).CrossRefGoogle Scholar
10Chandler, C. D., Powell, Q., Hampden-Smith, M.J., and Kodas, T. T., J. Mater. Chem. 3, 775 (1993).CrossRefGoogle Scholar
11Nobumsa, H., Shimizu, K., Kitano, Y., and Kawai, T., Jpn. J. Appl. Phys. 27, L1669 (1988).CrossRefGoogle Scholar
12Xiong, Y., Lyons, S. W., Ward, T. L., Kodas, T. T., and Pratsinis, S.E., J. Aerosol. Sci. 23, S815 (1992).CrossRefGoogle Scholar
13Lyons, S. W., Xiong, Y., Ward, T. L., Kodas, T. T., and Pratsinis, S. E., J. Mater. Res. 7, 3333 (1992).CrossRefGoogle Scholar
14Berner, A. and Lurzer, C., J. Phys. Chem. 84, 2079 (1980).CrossRefGoogle Scholar
15Hitzenberger, R. and Husar, R. B., Atmos. Environ. 18, 449 (1984).CrossRefGoogle Scholar
16Horvath, H., Kreiner, I., and Norek, C., J. Aerosol Sci. 18, 817 (1987).CrossRefGoogle Scholar
17Hinds, W. C., Aerosol Technology (John Wiley and Sons, New York, 1982).Google Scholar
18Liu, B. Y. H., Pui, D. Y. H., Rubow, K. L., and Szymanski, W. W., Ann. Occup. Hyg. 29, 251 (1985).Google Scholar
19Adachi, M., Okuyama, K., Moon, S. W., and Seinfeld, J. H., Aerosol Sci. Technol. 12, 225 (1990).CrossRefGoogle Scholar
20Koch, W., Lodding, H., Molter, W., and Munzinger, F., Staub-Reinhaltung der Luft 48, 341 (1988).Google Scholar
21Kauppinen, E. I. and Pakkanen, T. A., Environ. Sci. Technol. 2, 1811 (1990).CrossRefGoogle Scholar
22Billamo, R. E. and Kauppinen, E. I., Aerosol Sci. Technol. 14, 33 (1991).Google Scholar
23Gurav, A. S., Ward, T. L., Kodas, T. T., Brynestad, J., Kroeger, D. M., and Hsu, H., in Superconductor Engineering, edited by Mensah, T.O. (AIChE Symp. Series, No. 288, 1992), Vol. 88, p. 64.Google Scholar
24Gurav, A. S., Kodas, T. T., Kauppinen, E. I., Joutsensaari, J., and Zilliacus, R., NanoStruct. Mater. 4, 583 (1994).CrossRefGoogle Scholar
25Chadda, S., Ward, T. L., Kodas, T. T., Ott, K., and Kroeger, D. M., J. Aerosol Sci. 22, 601 (1991).CrossRefGoogle Scholar
26Gurav, A., Kodas, T., Pluym, T., and Xiong, Y., Aerosol Sci. Technol. 19, 411 (1993).CrossRefGoogle Scholar