Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T08:23:37.612Z Has data issue: false hasContentIssue false

Functional piezoelectric yarn: Toward optimization of zinc oxide nanowires growth

Published online by Cambridge University Press:  10 September 2020

Dina Badawy
Affiliation:
Department of Material Engineering, The University of British Columbia, 6350 Stores Rd, Vancouver, BC, CanadaV6T 1Z4
Saeid Soltanian
Affiliation:
Department of Electrical and Computer Engineering, The University of British Columbia, 5500 - 2332 Main Mall, Vancouver, BC, CanadaV6T 1Z4
Peyman Servati
Affiliation:
Department of Electrical and Computer Engineering, The University of British Columbia, 5500 - 2332 Main Mall, Vancouver, BC, CanadaV6T 1Z4
Addie Bahi
Affiliation:
Department of Material Engineering, The University of British Columbia, 6350 Stores Rd, Vancouver, BC, CanadaV6T 1Z4
Frank Ko*
Affiliation:
Department of Material Engineering, The University of British Columbia, 6350 Stores Rd, Vancouver, BC, CanadaV6T 1Z4
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Growing zinc oxide (ZnO) nanowires (NWs) on yarns promotes smart sensing and creates opportunities for new applications. ZnO NWs sensing performance is influenced by its dimensions, which can be tailored by controlling the growth parameters. In this study, we investigated the effect of the growth parameters (time, temperature, and precursor concentration ratio) on the NWs’ morphology, dimensions, and piezoelectric performance. Our results showed that ZnO NWs produced with 6 and 9 h had long nanowires; however, they mainly got tangled with the nanowires on the adjacent fibers and peeled-off the fiber surface. Growth at a 1:1 precursor concentration ratio for 9 h produced the same nanowires’ length (~3 μm) as growth at a 3:1 precursor concentration ratio for 3 h. Among all of the studied growth conditions, ZnO NWs produced with a 3:1 precursor concentration ratio at 90 °C for 3 h showed uniform dimensions and stable electrical charge output.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xu, W., Huang, M.C., Amini, N., He, L., and Sarrafzadeh, M.: ECushion: A textile pressure sensor array design and calibration for sitting posture analysis. IEEE Sens. J. 13, 3926 (2013).CrossRefGoogle Scholar
Huang, M.C., Liu, J.J., Xu, W., Alshurafa, N., Zhang, X., and Sarrafzadeh, M.: Using pressure map sequences for recognition of on bed rehabilitation exercises. IEEE J. Biomed. Heal. Informatics 18, 411 (2014).CrossRefGoogle Scholar
Salowitz, N., Guo, Z., Kim, S-J., Li, Y-H., Lanzara, G., and Chang, F-K.: 2012 IEEE Sensors (IEEE, Taipei, 2012), pp. 1–3.Google Scholar
Thomas Holleczek, G.T., Rüegg, A., and Harms, H.: 2010 IEEE Sensors (2010), pp. 732–737.Google Scholar
Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., and Wang, Z.L.: Self-powered nanowire devices. Nat. Nanotechnol. 5, 366 (2010).CrossRefGoogle ScholarPubMed
Bai, S., Zhang, L., Xu, Q., Zheng, Y., Qin, Y., and Wang, Z.L.: Two dimensional woven nanogenerator. Nano Energy 2, 749 (2013).CrossRefGoogle Scholar
Lee, M., Chen, C-Y., Wang, S., Cha, S.N., Park, Y.J., Park, Y.J., Kim, J.M., Chou, L-J., and Wang, Z.L.: A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. 24, 1759 (2012).CrossRefGoogle ScholarPubMed
Wu, W., Bai, S., Yuan, M., Qin, Y., Wang, Z.L., and Jing, T.: Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 6, 6231 (2012).CrossRefGoogle ScholarPubMed
Khan, A., Ali Abbasi, M., Hussain, M., Hussain Ibupoto, Z., Wissting, J., Nur, O., and Willander, M.: Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric. Appl. Phys. Lett. 101, 193 (2012).CrossRefGoogle Scholar
Justeau, C., Tlemcani, T.S., Poulin-Vittrant, G., Nadaud, K., and Alquier, D.: A comparative study on the effects of Au, ZnO and AZO seed layers on the performance of ZnO nanowire-based piezoelectric nanogenerators. Materials (Basel) 12, 1 (2019).CrossRefGoogle ScholarPubMed
Wang, L., Tsan, D., Stoeber, B., and Walus, K.: Substrate-free fabrication of self-supporting ZnO nanowire arrays. Adv. Mater. 24, 3999 (2012).CrossRefGoogle ScholarPubMed
Tsan, D.: Zinc Oxide Nanowires for Dynamic Strain Sensing (University of British Columbia, Vancouver, 2013).Google Scholar
Loh, K.J. and Chang, D.: Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing. J. Mater. Sci. 46, 228 (2010).CrossRefGoogle Scholar
Hong, G-W., Kim, J., Lee, J-S., Shin, K., Jung, D., and Kim, J-H.: A flexible tactile sensor using seedless hydrothermal growth of ZnO nanorods on fabrics. J. Phys. Commun. 4, 045002 (2020).CrossRefGoogle Scholar
Zhu, G., Wang, A.C., Liu, Y., Zhou, Y., and Wang, Z.L.: Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett. 12, 3086 (2012).CrossRefGoogle ScholarPubMed
Chen, H., Zhu, L., Liu, H., and Li, W.: Growth of ZnO nanowires on fibers for one-dimensional flexible quantum dot-sensitized solar cells. Nanotechnology 23, 075 (2012).CrossRefGoogle ScholarPubMed
Gholamkhass, B., Kiasari, N.M., and Servati, P.: An efficient inverted organic solar cell with improved ZnO and gold contact layers. Org. Electron. 13, 945 (2012).CrossRefGoogle Scholar
Giffney, T.J., Ng, Y.H., and Aw, K.C.: A surface acoustic wave ethanol sensor with zinc oxide nanorods. Smart Mater. Res. 2012, 1 (2012).CrossRefGoogle Scholar
Qin, Y., Wang, X., and Wang, Z.L.: Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809 (2008).CrossRefGoogle ScholarPubMed
Ran, J., He, M., Li, W., Cheng, D., and Wang, X.: Growing ZnO nanoparticles on polydopamine-templated cotton fabrics for durable antimicrobial activity and UV protection. Polymers (Basel) 10 (2018).CrossRefGoogle ScholarPubMed
Dixit, P., Ghosh, A., and Majumdar, A.: Hybrid approach for augmenting the impact resistance of p-aramid fabrics: Grafting of ZnO nanorods and impregnation of shear thickening fluid. J. Mater. Sci. 54, 13106 (2019).CrossRefGoogle Scholar
Wen, B., Sader, J., and Boland, J.: Mechanical properties of ZnO nanowires. Phys. Rev. Lett. 101, 175502 (2008).CrossRefGoogle ScholarPubMed
Chen, C., Shi, Y., Zhang, Y., Zhu, J., and Yan, Y.: Size dependence of young's modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006).CrossRefGoogle ScholarPubMed
Zhao, M-H., Wang, Z-L., and Mao, S.X.: Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4, 587 (2004).CrossRefGoogle Scholar
Li, Z., Yang, R., Yu, M., Bai, F., Li, C., and Wang, Z.L.: Cellular level biocompatibility and biosafety of ZnO nanowires. J. Phys. Chem. C 112, 20114 (2008).CrossRefGoogle Scholar
Wang, Z.L. and Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006).CrossRefGoogle ScholarPubMed
Xiao, X., Yuan, L., Zhong, J., Ding, T., Liu, Y., Cai, Z., Rong, Y., Han, H., Zhou, J., and Wang, Z.L.: High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 23, 5440 (2011).CrossRefGoogle ScholarPubMed
Bae, J., Song, M.K., Park, Y.J., Kim, J.M., Liu, M., and Wang, Z.L.: Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. Engl. 50, 1683 (2011).CrossRefGoogle ScholarPubMed
Kim, H., Kim, S.M., Son, H., Kim, H., Park, B., Ku, J., Sohn, J.I., Im, K., Jang, J.E., Park, J-J., Kim, O., Cha, S., and Park, Y.J.: Enhancement of piezoelectricity via electrostatic effects on a textile platform. Energy Environ. Sci. 5, 8932 (2012).CrossRefGoogle Scholar
Li, X., Lin, Z.H., Cheng, G., Wen, X., Liu, Y., Niu, S., and Wang, Z.L.: 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 8, 10674 (2014).CrossRefGoogle ScholarPubMed
Zhang, L., Bai, S., Su, C., Zheng, Y., Qin, Y., Xu, C., and Wang, Z.L.: A high-reliability kevlar fiber-ZnO nanowires hybrid nanogenerator and its application on self-powered UV detection. Adv. Funct. Mater. 25, 5794 (2015).CrossRefGoogle Scholar
Seung, W., Gupta, M.K., Lee, K.Y., Shin, K-S., Lee, J-H., Kim, T.Y., Kim, S., Lin, J., Kim, J.H., and Kim, S-W.: Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9, 3501 (2015).CrossRefGoogle ScholarPubMed
Lim, Z.H., Chia, Z.X., Kevin, M., Wong, a.S.W., and Ho, G.W.: A facile approach towards ZnO nanorods conductive textile for room temperature multifunctional sensors. Sens. Actuat. B Chem. 151, 121 (2010).CrossRefGoogle Scholar
Malakooti, M.H., Patterson, B.A., Hwang, H-S., and Sodano, H.A.: ZnO nanowire interfaces for high strength multifunctional composites with embedded energy harvesting. Energy Environ. Sci. 634, 634 (2016).CrossRefGoogle Scholar
Ko, Y.H., Kim, M.S., Park, W., and Yu, J.S.: Well-integrated ZnO nanorod arrays on conductive textiles by electrochemical synthesis and their physical properties. Nanoscale Res. Lett. 8, 28 (2013).CrossRefGoogle ScholarPubMed
Liao, Q., Mohr, M., Zhang, X., Zhang, Z., Zhang, Y., and Fecht, H-J.: Carbon fiber-ZnO nanowire hybrid structures for flexible and adaptable strain sensors. Nanoscale 5, 12350 (2013).CrossRefGoogle ScholarPubMed
Liu, J., Wu, W., Bai, S., and Qin, Y.: Synthesis of high crystallinity ZnO nanowire array on polymer substrate and flexible fiber-based sensor. ACS Appl. Mater. Interfaces 3, 4197 (2011).CrossRefGoogle ScholarPubMed
Wang, Z.L.: Nanopiezotronics. Adv. Mater. 19, 889 (2007).CrossRefGoogle Scholar
Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P.: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).CrossRefGoogle ScholarPubMed
Wu, J.J. and Liu, S.C.: Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 14, 215 (2002).3.0.CO;2-J>CrossRefGoogle Scholar
Liu, R., Vertegel, A.A., Bohannan, E.W., Sorenson, T.A., and Switzer, J.A.: Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold. Chem. Mater. 13, 508 (2001).CrossRefGoogle Scholar
Guo, M., Diao, P., and Cai, S.: Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. J. Solid State Chem. 178, 1864 (2005).CrossRefGoogle Scholar
Akgun, M.C., Kalay, Y.E., and Unalan, H.E.: Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt. J. Mater. Res. 27, 1445 (2012).CrossRefGoogle Scholar
Parize, R., Garnier, J., Chaix-Pluchery, O., Verrier, C., Appert, E., and Consonni, V.: Effects of hexamethylenetetramine on the nucleation and radial growth of ZnO nanowires by chemical bath deposition. J. Phys. Chem. C 120, 5242 (2016).CrossRefGoogle Scholar
Sun, Y., Hu, J., Wang, N., Zou, R., Wu, J., Song, Y., Chen, H., Chen, H., and Chen, Z.: Controllable hydrothermal synthesis, growth mechanism, and properties of ZnO three-dimensional structures. New J. Chem. 34, 732 (2010).CrossRefGoogle Scholar
Liu, J., She, J., Deng, S., Chen, J., and Xu, N.: Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics. J. Phys. Chem. C 112, 11685 (2008).CrossRefGoogle Scholar
Tlemcani, T.S., Justeau, C., Nadaud, K., Poulin-Vittrant, G., and Alquier, D.: Deposition time and annealing effects of ZnO seed layer on enhancing vertical alignment of piezoelectric ZnO nanowires. Chemosensors 7, 1 (2019).Google Scholar
Xu, C., Shin, P., Cao, L., and Gao, D.: Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. J. Phys. Chem. C 114, 125 (2010).CrossRefGoogle Scholar
Nour, E.S., Khan, A., Nur, O., and Willander, M.: A flexible sandwich nanogenerator for harvesting piezoelectric potential from single crystalline zinc oxide nanowires. Nanomater. Nanotechnol. (2014). doi:10.5772/59068.CrossRefGoogle Scholar
Unalan, H.E., Hiralal, P., Rupesinghe, N., Dalal, S., Milne, W.I., and Amaratunga, G.A.J.: Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 19, 255 (2008).CrossRefGoogle ScholarPubMed
Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai, G., and Yang, P.: General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 5, 1231 (2005).CrossRefGoogle ScholarPubMed
Gullapalli, H., Vemuru, V.S.M., Kumar, A., Botello-Mendez, A., Vajtai, R., Terrones, M., Nagarajaiah, S., and Ajayan, P.M.: Flexible piezoelectric ZnO-paper nanocomposite strain sensor. Small 6, 1641 (2010).CrossRefGoogle ScholarPubMed
Chang, Z.: “Firecracker-shaped” ZnO/polyimide hybrid nanofibers via electrospinning and hydrothermal process. Chem. Commun. (Camb) 47, 4427 (2011).CrossRefGoogle ScholarPubMed
Sakai, D., Nagashima, K., Yoshida, H., Kanai, M., He, Y., Zhang, G., Zhao, X., Takahashi, T., Yasui, T., Hosomi, T., Uchida, Y., Takeda, S., Baba, Y., and Yanagida, T.: Substantial narrowing on the width of “concentration window” of hydrothermal ZnO nanowires via ammonia addition. Sci. Rep. 9, 14160 (2019).CrossRefGoogle ScholarPubMed
Vayssieres, L.: Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464 (2003).CrossRefGoogle Scholar
Wen, X., Wu, W., Ding, Y., and Wang, Z.L.: Seedless synthesis of patterned ZnO nanowire arrays on metal thin films (Au, Ag, Cu, Sn) and their application for flexible electromechanical sensing. J. Mater. Chem. 22, 9469 (2012).CrossRefGoogle Scholar
Govender, K., Boyle, D.S., Kenway, P.B., and O'Brien, P.: Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 14, 2575 (2004).CrossRefGoogle Scholar
Xu, S., Adiga, N., Ba, S., Dasgupta, T., Wu, J., and Wang, Z.L.: Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS Nano 3, 1803 (2009).CrossRefGoogle ScholarPubMed
Hinchet, R., Lee, S., Ardila, G., Montès, L., Mouis, M., and Wang, Z.L.: Performance optimization of vertical nanowire-based piezoelectric nanogenerators. Adv. Funct. Mater. 24, 971 (2014).CrossRefGoogle Scholar
Fan, H.J., Lee, W., Hauschild, R., Alexe, M., Le Rhun, G., Scholz, R., Dadgar, A., Nielsch, K., Kalt, H., Krost, A., Zacharias, M., and Gösele, U.: Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications. Small 2, 561 (2006).CrossRefGoogle ScholarPubMed
Scrymgeour, D. A. and Hsu, J.W.P.: Correlated piezoelectric and electrical properties in individual ZnO nanorods. Nano Lett. 8, 2204 (2008).CrossRefGoogle ScholarPubMed
Tong, Y., Liu, Y., Dong, L., Zhao, D., Zhang, J., Lu, Y., Shen, D., and Fan, X.: Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J. Phys. Chem. B 110, 20263 (2006).CrossRefGoogle ScholarPubMed
Fudzi, L.M., Zainal, Z., Lim, H.N., Chang, S.K., Holi, A.M., and Ali, M.S.M.: Effect of temperature and growth time on vertically aligned ZnO nanorods by simplified hydrothermal technique for photoelectrochemical cells. Materials (Basel) 11, 704 (2018).CrossRefGoogle Scholar
Wu, C-F. and Hamada, M.: Experiments: Planning, Analysis, and Optimization (Wiley, Hoboken, New Jersey, 2009).Google Scholar
Xu, S., Lao, C., Weintraub, B., and Wang, Z.L.: Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. J. Mater. Res. 23, 2072 (2008).CrossRefGoogle Scholar
Ghayour, H., Rezaie, H.R., Mirdamadi, S., and Nourbakhsh, A.A.: The effect of seed layer thickness on alignment and morphology of ZnO nanorods. Vacuum 86, 101 (2011).CrossRefGoogle Scholar
Li, Z., Huang, X., Liu, J., and Ai, H.: Single-crystalline ZnO nanowires on zinc substrate by a simple hydrothermal synthesis method. Mater. Lett. 62, 2507 (2008).CrossRefGoogle Scholar
Greene, L.E., Law, M., Goldberger, J., Kim, F., Johnson, J.C., Zhang, Y., Saykally, R.J., and Yang, P.: Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chemie Int. Ed. 42, 3031 (2003).CrossRefGoogle ScholarPubMed
Baruah, S. and Dutta, J.: pH-dependent growth of zinc oxide nanorods. J. Cryst. Growth 311, 2549 (2009).CrossRefGoogle Scholar
Supplementary material: PDF

Badawy et al. supplementary material

Badawy et al. supplementary material

Download Badawy et al. supplementary material(PDF)
PDF 1.1 MB