Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T07:26:02.808Z Has data issue: false hasContentIssue false

Functional glucosamine-iron oxide nanocarriers

Published online by Cambridge University Press:  11 June 2020

Luis M. R. Rivera
Affiliation:
Instituto de Física, Universidade de Brasilia, Brasilia, DF70910-900, Brazil Instituto de Ciências Biológicas, Universidade de Brasilia, Brasilia, DF70910-900, Brazil
Julhyana G. Machado
Affiliation:
Instituto de Física, Universidade de Brasilia, Brasilia, DF70910-900, Brazil Instituto de Ciências Biológicas, Universidade de Brasilia, Brasilia, DF70910-900, Brazil
Mohan Chandra Mathpal
Affiliation:
Instituto de Física, Universidade de Brasilia, Brasilia, DF70910-900, Brazil
Natalia L. Chaves
Affiliation:
Instituto de Ciências Biológicas, Universidade de Brasilia, Brasilia, DF70910-900, Brazil
Danijela Gregurec
Affiliation:
Soft Matter Nanotechnology Laboratory, CIC biomaGUNE, Guipuzkoa20009, Spain
Sônia N. Báo
Affiliation:
Instituto de Ciências Biológicas, Universidade de Brasilia, Brasilia, DF70910-900, Brazil
Leonardo G. Paterno
Affiliation:
Instituto de Química, Universidade de Brasilia, Brasilia, DF70910-900, Brazil
Sergio E. Moya
Affiliation:
Soft Matter Nanotechnology Laboratory, CIC biomaGUNE, Guipuzkoa20009, Spain
Ricardo B. Azevedo
Affiliation:
Instituto de Ciências Biológicas, Universidade de Brasilia, Brasilia, DF70910-900, Brazil
Maria A. G. Soler*
Affiliation:
Instituto de Física, Universidade de Brasilia, Brasilia, DF70910-900, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Herein, we report a synthetic route capable of producing superparamagnetic, stable and biocompatible glucosamine (GLU) nanocarriers, composed by colloidal iron oxide nanoparticles (ION, ~6 nm) surface-functionalized with GLU dispersed in physiological media (pH 7.2). The route consists first of the preparation of ION by aqueous alkaline co-precipitation of 1:2 Fe(II)/Fe(III) followed by surface treatment with citric acid, activation of acidic groups via carbodiimide intermediary and further amidation using GLU as the amine reactant. Results from cell viability tests performed with human dental pulp tissue cells suggest that ION–GLU nanocolloids are biocompatible and non-toxic for two different concentrations and several hours of incubation. Moreover, optical microscopy shows that ION–GLU adsorbs at the cells walls and also transposes them, reaching cytoplasm and nucleus as well. All findings point out the promising use of ION–GLU as biocompatible nanocarriers for GLU delivery such as in articulation diseases.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dahmer, S. and Schiller, R.M.: Glucosamine. Am. Fam. Physician 78, 471 (2008).Google ScholarPubMed
Huskisson, E.C.: Glucosamine and chondroitin for osteoarthritis. J. Int. Med. Res. 36, 1161 (2008).CrossRefGoogle ScholarPubMed
Kirkham, S.G. and Samarasinghe, R.K.: Review article: Glucosamine. J. Orthop. Surg. 17, 72 (2009).CrossRefGoogle ScholarPubMed
Hua, J., Sakamoto, K., and Nagaoka, I.: Inhibitory actions of glucosamine, a therapeutic agent for osteoarthritis, on the functions of neutrophils. J. Leukocyte Biol. 71, 632 (2002).Google ScholarPubMed
Miller, K.L. and Clegg, D.O.: Glucosamine and chondroitin sulfate. Rheum. Dis. Clin. N. Am. 37, 103 (2011).CrossRefGoogle ScholarPubMed
Liu, X., Machado, G.C., Eyles, J.P., Ravi, V., and Hunter, D.J.: Dietary supplements for treating osteoarthritis: A systematic review and meta-analysis. Br. J. Sports Med. 52, 167 (2019).CrossRefGoogle Scholar
Zahedipour, F., Dalirfardoueib, R., Karimic, G., and Jamialahmadi, K.: Molecular mechanisms of anticancer effects of glucosamine. Biomed. Pharmacother. 95, 1051 (2017).CrossRefGoogle ScholarPubMed
Cucchiarini, M. and Madry, H.: Genetic modification of mesenchymal stem cells for cartilage repair. Bio-Med. Mater. Eng. 20, 135 (2010).CrossRefGoogle ScholarPubMed
Jackson, C.G., Plaas, A.H., Sandy, J.D., Hua, C., Kim-Rolands, S., Barnhill, J.G., Harris, C.L., and Clegg, D.O.: The human pharmacokinetics of oral ingestion of glucosamine and chondroitin sulfate taken separately or in combination. Osteoarthr. Cartil. 18, 297 (2010).CrossRefGoogle ScholarPubMed
Setnikar, I., Pacini, M., and Revel, L.: Antiarthritic effects of glucosamine sulfate studied in animal models. Arzneim.-Forsch. 41, 542 (1991).Google ScholarPubMed
Soler, M.A.G. and Paterno, L.G.: Magnetic nanomaterials. In Nanostructures, Leite, F., Ferreira, M., and Oliveira, O.N. Jr., eds. (Elsevier, Oxford, United Kingdom, 2017); pp. 147186.CrossRefGoogle Scholar
Carneiro, M.L., Nunes, E.S., Peixoto, R.C., Oliveira, R.G., Lourenço, L.H., Da Silva, I.C., Simioni, A.R., Tedesco, A.C., De Souza, A.R., and Lacava, Z.G.: Free Rhodium (II) citrate and rhodium (II) citrate magnetic carriers as potential strategies for breast cancer therapy. J. Nanobiotechnol. 9, 11 (2011).CrossRefGoogle ScholarPubMed
Zhua, A., Luo, X., and Dai, S.: Chitosan-poly(acrylic acid) complex modified paramagnetic Fe3O4 nanoparticles for camptothecin loading and release. J. Mater. Res. 24, 2307 (2009).CrossRefGoogle Scholar
Haghighi, A.H., Faghih, Z., Khorasani, M.T., and Farjadian, F.: Antibody conjugated onto surface modified magnetic nanoparticles for separation of HER2+ breast cancer cells. J. Magn. Magn. Mater. 490, 165479 (2019).CrossRefGoogle Scholar
Rivera, L.M.R., Paterno, L.G., Chaves, N.L., Gregurec, D., Báo, S.N., Moya, S.E., Jain, M., Azevedo, R.B., Morais, P.C., and Soler, M.A.G.: Biocompatible superparamagnetic carriers of chondroitin sulfate. Mater. Res. Express 6, 066106 (2019).CrossRefGoogle Scholar
Kuncser, V., Chipara, D., Martirosyan, K.S., Schinteie, G.A., Ibrahim, E., and Chipara, M.: Magnetic properties and thermal stability of polyvinylidene fluoride—Fe2O3 nanocomposites. J. Mater. Res. 35, 132 (2020).CrossRefGoogle Scholar
Bao, N. and Gupta, A.: Self-assembly of superparamagnetic nanoparticles. J. Mater. Res. 26, 111 (2011).CrossRefGoogle Scholar
Soler, M.A.G., Paterno, L.G., Sinnecker, J.P., Wen, J.G., Sinnecker, E.H.C.P., Neumann, R.F., Bahiana, M., Novak, M.A., and Morais, P.C.: Assembly of c-Fe2O3/polyaniline nanofilms with tuned dipolar interaction. J. Nanopart. Res. 14, 653 (2012).CrossRefGoogle Scholar
Letti, C.J., Paterno, L.G., Pereira-Da-Silva, M.A., Morais, P.C., and Soler, M.A.G.: The role of polymer films on the oxidation of magnetite nanoparticles. J. Solid State Chem. 246, 57 (2017).CrossRefGoogle Scholar
Soler, M.A.G.: Layer-by-layer assembled iron oxide based polymeric nanocomposites. J. Magn. Magn. Mater. 467, 37 (2018).CrossRefGoogle Scholar
Viali, W.R., Alcantara, G.B., Sartoratto, P.P., Soler, M.A.G., Mosiniewicz-Szablewska, E., Andrzejewski, B., and Morais, P.C.: Investigation of the molecular surface coating on the stability of insulating magnetic oils. J. Phys. Chem. C 114, 179 (2009).CrossRefGoogle Scholar
Kumar, A., Jena, P.K., Behera, S., Lockey, R.F., Mohapatra, S., and Mohapatra, S.: Multifunctional magnetic nanoparticles for targeted delivery of drug. Nanomedicine 6, 64 (2010).CrossRefGoogle Scholar
Alcantara, G.B., Paterno, L.G., Fonseca, F.J., Pereira-Da-Silva, M.A., Morais, P.C., and Soler, M.A.G.: Layer-by-layer assembled cobalt ferrite nanoparticles for chemical sensing. J. Nanofluids 2, 175 (2013).CrossRefGoogle Scholar
Alcantara, G.B., Paterno, L.G., Fonseca, F.J., Pereira-Da-Silva, M.A., Morais, P.C., and Soler, M.A.G.: Dielectric properties of cobalt ferrite nanoparticles in ultrathin nanocomposite films. Phys. Chem. Chem. Phys 15, 19853 (2013).CrossRefGoogle ScholarPubMed
Mahendran, V. and Philip, J.: Non-enzymatic glucose detection using magnetic nanoemulsions. Appl. Phys. Lett. 105, 123110 (2014).CrossRefGoogle Scholar
Fantechi, E., Innocenti, C., Zanardelli, M., Fittipaldi, M., Falvo, E., Carbo, M., Shullani, V., Mannelli, L.C., Ghelardini, C., Ferretti, A.M., Ponti, A., Sangregorio, C., and Ceci, P.: A smart platform for hyperthermia application in cancer treatment: Cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS Nano 8, 4705 (2014).CrossRefGoogle Scholar
Aadinath, W., Ghosh, T., and Anandharamakrishnan, C.: Multimodal magnetic nano-carriers for cancer treatment: Challenges and advancements. J. Magn. Magn. Mater. 401, 1159 (2016).CrossRefGoogle Scholar
Letti, C.J., Costa, K.A., Gross, M.A., Paterno, L.G., Pereira-Da-Silva, M.A., Morais, P.C., and Soler, M.A.G.: Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites. Adv. Nano Res. 5, 215 (2017).Google Scholar
Gao, Z., Ma, T., Zhao, E., Docter, D., Yang, W., Stauber, R.H., and Gao, M.: Small is smarter: Nano MRI contrast agents–advantages and recent achievements. Small 12, 556 (2016).CrossRefGoogle Scholar
Nosrati, H., Javani, E., Salehiabar, M., Manjili, H.K., Davaran, S., and Danafar, H.: Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system. J. Mater. Res. 33, 1602 (2018).CrossRefGoogle Scholar
Ling, W., Wang, M., Xiong, C., Xie, D., Chen, Q., Chu, X., Qiu, X., Li, Y., and Xiao, X.: Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. J. Mater. Res. 34, 1828 (2019).CrossRefGoogle Scholar
Srinivasan, B. and Huang, X.: Functionalization of magnetic nanoparticles with organic molecules: Loading level determination and evaluation of linker length effect on immobilization. Chirality 20, 265 (2008).CrossRefGoogle ScholarPubMed
Valero, E., Tambalo, S., Marzola, P., Ortega-Munoz, M., López-Jaramillo, F.J., Santoyo-González, F., Dios López, J., Delgado, J.J., Calvino, J.J., and Cuesta, R.: Magnetic nanoparticles-templated assembly of protein subunits: A new platform for carbohydrate-based MRI nanoprobes. J. Am. Chem. Soc. 133, 4889 (2011).CrossRefGoogle ScholarPubMed
Narayanan, K., Lin, A.W., Zheng, Y., Erathodiyil, N., Wan, A.C., and Ying, J.Y.: Glucosamine-conjugated nanoparticles for the separation of insulin-secreting beta cells. Adv. Healthcare Mater. 2, 1198 (2013).CrossRefGoogle ScholarPubMed
Gong, X., Wang, F., Huang, Y., Lin, X., Chen, C., Wang, F., and Yang, L.: Magnetic-targeting of polyethylenimine-wrapped iron oxide nanoparticle labeled chondrocytes in a rabbit articular cartilage defect model. RSC Adv. 8, 7633 (2018).CrossRefGoogle Scholar
Wu, W., Wu, Z., Yu, T., Jiang, C., and Kim, W.-S.: Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16, 023501 (2015).CrossRefGoogle ScholarPubMed
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., and Muller, R.N.: Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064 (2008).CrossRefGoogle ScholarPubMed
Goldberg, R.N., Kishore, N., and Lennen, R.M.: Thermodynamic quantities for the ionization reactions of buffers. J. Phys. Chem. Ref. Data 31, 231 (2002).CrossRefGoogle Scholar
Sturges, H.A.: The choice of a class interval. J. Am. Stat. Assoc. 21, 65 (1926).CrossRefGoogle Scholar
Kaushik, A., Khan, R., Solanki, P.R., Pandey, P., Alam, J., Ahmad, S., and Malhotra, B.: Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens. Bioelectron. 24, 676 (2008).CrossRefGoogle ScholarPubMed
Yang, H.-M., Lee, H.J., Jang, K.-S., Park, C.W., Yang, H.W., Do Heo, W., and Kim, J.-D.: Poly (amino acid)-coated iron oxide nanoparticles as ultra-small magnetic resonance probes. J. Mater.Chem. 19, 4566 (2009).CrossRefGoogle Scholar
Yoo, D., Lee, C., Seo, B., and Piao, Y.: One pot synthesis of amine-functionalized and angular-shaped superparamagnetic iron oxide nanoparticles for MR/fluorescence bimodal imaging application. Rsc Advances 7, 12876 (2017).CrossRefGoogle Scholar
Pompeo, F. and Resasco, D.E.: Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett. 2, 369 (2002).CrossRefGoogle Scholar
Degenhardt, J., and Mcquillan, A.J.: In situ ATR-FTIR spectroscopic study of adsorption of perchlorate, sulfate, and thiosulfate ions onto chromium(III) oxide hydroxide thin films. Langmuir 15, 4595 (1999). 4595.CrossRefGoogle Scholar
Lewis, D.L., Estes, E.D., and Hodgson, D.J.: The infrared spectra of coordinated perchlorates. J. Cryst. Mol. Struct. 5, 67 (1975).CrossRefGoogle Scholar
Ahmed, M.S.U., Salam, A.B., Clayton Yates, K.W., Jaynes, J., Turner, T., and Abdalla, M.O.: Double-receptor-targeting multifunctional iron oxide nanoparticles drug delivery system for the treatment and imaging of prostate cancer. Int. J. Nanomed. 12, 6973 (2017).CrossRefGoogle ScholarPubMed
Veerapandian, M., Lim, S.K., Nam, H.M., Kuppannan, G., and Yun, K.S.: Glucosamine-functionalized silver glyconanoparticles: Characterization and antibacterial activity. Anal. Bioanal. Chem. 398, 867 (2010).CrossRefGoogle ScholarPubMed
Yamashita, T. and Hayes, P.: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441 (2008).CrossRefGoogle Scholar
Wu, H., Gao, G., Zhou, X., Zhang, Y., and Guo, S.: Control on the formation of Fe3O4 nanoparticles on chemically reduced graphene oxide surfaces. Cryst. Eng. Comm. 14, 499 (2012).CrossRefGoogle Scholar
Weaver, H., Weaver, J.F., Hoflund, G.B., and Salaita, G.N.: Electron energy loss spectroscopic investigation of Ni metal and NiO before and after surface reduction by Ar+ bombardment. J. Electron Spectros. Relat. Phenomena 134, 139 (2004).CrossRefGoogle Scholar
Moulder, J.F.: Handbook of X-ray photoelectron spectroscopy. In Physical Electronics Division, Chastain, J., ed. (Perkin-Elmer Corporation, Minnesota, USA, 1992).Google Scholar
Norton, P.R., Tapping, R.L., and Goodale, J.W.: A photoemission study of the interaction of Ni (100),(110) and (111) surfaces with oxygen. Surf. Sci. 65, 13 (1977).CrossRefGoogle Scholar
Wilson, D. and Langell, M.A.: XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl. Surf. Sci. 303, 6 (2014).CrossRefGoogle Scholar
Silva, A.C., Oliveira, T.R., Mamani, J.B., Malheiros, S.M.F., Malavolta, L., Pavon, L.F., Sibov, T.T., Amaro, E. Jr., Tannús, A., Vidoto, E.L.G., Martins, M.J., Santos, R.S., and Gamarra, L.F.: Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int. J. Nanomed 6, 591 (2011).Google ScholarPubMed
Franklin, A.D. and Berkowitz, A.E.: The approach to saturation in dilute ferromagnetics. Phys. Rev. 89, 1171 (1953).CrossRefGoogle Scholar
Shafi, K.V.P.M., Ulman, A., Yan, X.Z., Yang, N.L., Estournes, C., White, H., and Rafailovich, M.: Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir 17, 5093 (2001).CrossRefGoogle Scholar
Mikhaylova, M., Kim, D.K., Berry, C.C., Zagorodni, A., Toprak, M., Curtis, A.S., and Muhammed, M.: BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem. Mater. 16, 2344 (2004).CrossRefGoogle Scholar
Paterno, L.G., Fonseca, F.J., Alcantara, G.B., Soler, M.A.G., Morais, P.C., Sinnecker, J.P., Novak, M.A., Lima, E.C.D., Leite, F.L., and Mattoso, L.H.C.: Fabrication and characterization of nanostructured conducting polymer films containing magnetic nanoparticles. Thin Solid Films 517, 1753 (2009).CrossRefGoogle Scholar
Aslam, M., Schultz, E.A., Sun, T., Meade, T., and Dravid, V.P.: Synthesis of amine-stabilized aqueous colloidal iron oxide nanoparticles. Cryst. Growth Des. 7, 471 (2007).CrossRefGoogle ScholarPubMed
Yang, L., Cao, Z., Sajja, H.K., Mao, H., Wang, L., Geng, H., Xu, H., Jiang, T., Wood, W.C., and Nie, S.: Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J. Biomed. Nanotechnol. 4, 439 (2008).CrossRefGoogle ScholarPubMed
Alberts, B.: Essential Cell Biology (Garland Science, New York, NY, 2013).CrossRefGoogle Scholar
Bacri, J.-C., Perzynski, R., Salin, D., Cabuil, V., and Massart, R.: Ionic ferrofluids: A crossing of chemistry and physics. J. Magn. Magn. Mater. 85, 27 (1990).CrossRefGoogle Scholar
Soler, M.A.G. and Fanyao, Q.: Raman Spectroscopy of Iron Oxide Nanoparticles. In Raman Spectroscopy of Nanomaterials Characterization, Kumar, C.S.S.R., ed. (Springer, Berlin, 2012); pp. 379416.CrossRefGoogle Scholar
Silva, S.W., Melo, T.F.O., Soler, M.A.G., Lima, E.C.D., Da Silva, A.F., and Morais, P.C.: Stability of citrate-coated magnetite and cobalt-ferrite nanoparticles under laser irradiation: A Raman spectroscopy investigation. IEEE Trans. Magn. 39, 2645 (2003).CrossRefGoogle Scholar
Pereira, O.L., Longo, J.P., and Azevedo, R.B.: Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch. Oral Biol. 57, 1079 (2012).CrossRefGoogle ScholarPubMed
Supplementary material: File

Rivera et al. supplementary material

Rivera et al. supplementary material

Download Rivera et al. supplementary material(File)
File 309.8 KB