Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T01:41:14.905Z Has data issue: false hasContentIssue false

Fullerenic nanostructures in flames

Published online by Cambridge University Press:  31 January 2011

K. Das Chowdhury
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Jack B. Howard
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
John B. VanderSande
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

High resolution transmission electron microscopy (HRTEM) was used to characterize nanostructures in soots produced in flames of benzene, acetylene, or ethylene premixed with oxygen and an inert diluent gas. The nanostructures ranged from ∼2 nm to ∼30 nm in size with a hollow core measuring about ∼ 1 nm to ∼10 nm in diameter and containing 5 to 20 shells. The shapes of the nanostructures included spherical, spheroidal, tubular, and trigonous.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature (London), 318, 162 (1985).CrossRefGoogle Scholar
2.Kratschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature (London) 347, 354 (1990).CrossRefGoogle Scholar
3.Iijima, S., Nature (London) 354, 56 (1991).CrossRefGoogle Scholar
4.Ebbesen, T. W. and Ajayan, P. M., Nature (London) 358, 220 (1992).CrossRefGoogle Scholar
5.Seraphin, S. and Jiao, J., Carbon 31, 1212 (1993).Google Scholar
6.Endo, M., Takeuchi, K., Susumu, I., Kobori, K., Shiraishi, M., and Kroto, H. W., J. Phys. Chem. Solids 54, 1841 (1993).CrossRefGoogle Scholar
7.Howard, J. B., McKinnon, J., Makarovsky, Y., Lafleur, A. L., and Johnson, M. E., Nature (London) 352, 139 (1991).CrossRefGoogle Scholar
8.Howard, J. B., Das Chowdhury, K., and VanderSande, J. B., Nature (London) 370, 603 (1994).CrossRefGoogle Scholar
9.Howard, J. B., McKinnon, J.T., Johnson, M. E., Makarovsky, Y., and Lafleur, A. L., J. Phys. Chem. 96, 6657 (1992).CrossRefGoogle Scholar
10.Seraphin, S., Zhou, D., Jiao, J., Withers, J. C., and Raouf Loutfy, Carbon 31, 685 (1993).CrossRefGoogle Scholar
11.Wang, S. and Buseck, P. R., Carbon 31, 397 (1993).Google Scholar
12.Ugarte, D., Nature (London) 359, 707 (1992).CrossRefGoogle Scholar
13.Ajayan, P. M. and Iijima, S., Nature (London) 358, 23 (1992).Google Scholar
14.Cox, D. M., Behal, S., Disko, M., Gorun, S. M., Greany, M., Hu, C. S., Kollin, E. B., Millar, J., Robbins, J., Robbins, W., Sherwood, R. D., and Tindall, P., J. Am. Chem. Soc. 113, 2940 (1991).CrossRefGoogle Scholar
15.Iijima, S., Ajayan, P. M., and Ichihasi, T., Phys. Rev. Lett. 69, 3100 (1992).Google Scholar
16.Iijima, S., Ichihasi, T., and Ando, Y., Nature (London) 356, 776 (1992).Google Scholar
17.Maiti, A., Brabec, C. J., and Bernholc, J., Phys. Rev. Lett. 70, 3023 (1993).CrossRefGoogle Scholar
18.MacKay, K. G., Kroto, H. W., and Wales, D. J., J. Chem. Soc. Faraday Trans. 88, 2815 (1992).CrossRefGoogle Scholar
19.Lu, J. P. and Yang, W., Phys. Rev. B 49, 11421 (1994).Google Scholar
20.York, D., Lu, J. P., and Yang, W., Phys. Rev. B 49, 8526 (1994).CrossRefGoogle Scholar
21.Lafluer, A. L., Howard, J.B., Marr, J. A., and Yadav, T., J. Phys. Chem. 97, 13539 (1993).Google Scholar
22.Ebbesen, T. W. and Ajayan, P.M., Nature 358, 220 (1992).Google Scholar