Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T14:25:13.588Z Has data issue: false hasContentIssue false

Fracture behavior of Al2O3/SiC-platelet composites

Published online by Cambridge University Press:  31 January 2011

M. Belmonte
Affiliation:
Instituto de Cerámica y Vidrio, C.S.I.C, 28500 Arganda del Rey, Madrid, Spain
J. S. Moya
Affiliation:
Instituto de Cerámica y Vidrio, C.S.I.C, 28500 Arganda del Rey, Madrid, Spain
P. Miranzo
Affiliation:
Instituto de Cerámica y Vidrio, C.S.I.C, 28500 Arganda del Rey, Madrid, Spain
D. Nguyen
Affiliation:
GEMPPM, URA CNRS 341-INSA de Lyon, 20 Av. A. Einstein, 69921 Villeurbanne Cedex, France
J. Dubois
Affiliation:
GEMPPM, URA CNRS 341-INSA de Lyon, 20 Av. A. Einstein, 69921 Villeurbanne Cedex, France
G. Fantozzi
Affiliation:
GEMPPM, URA CNRS 341-INSA de Lyon, 20 Av. A. Einstein, 69921 Villeurbanne Cedex, France
Get access

Abstract

Mechanical behavior of hot-pressed SiC platelet reinforced alumina composites has been analyzed as a function of SiC platelet content for two different alumina matrix powders. Fracture toughness and flexural strength at temperatures ranging from 25 to 1200 °C, R-curve behavior, and thermal shock resistance have been determined. Small differences in the impurity content of the starting Al2O3 powders strongly determine the microstructure and the mechanical behavior of Al2O3/SiC-platelet composites. Low alkali content alumina led to composites with large matrix grain size which presented spontaneous microcracking. At high temperature, a high viscosity liquid phase is formed that shields cracks enhancing mechanical properties and R-curve behavior. A small amount of impurities reduced Al2O3 matrix grain size and avoided spontaneous microcracking. Enhanced fracture toughness (up to 30%) at room temperature, R-curve behavior, and thermal shock resistance were achieved for these materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Becher, P. F. and Wei, G. C., J. Am. Ceram. Soc. 67 (12), C267–C269 (1984).CrossRefGoogle Scholar
2. Wei, G. C. and Becher, P. F., Am. Ceram. Soc. Bull. 64 (2), 298304 (1985).Google Scholar
3. Becher, P. F., Tiegs, T. N., Ogle, S. C., and Warnick, W. H., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Evans, A. G., Hasselman, D. P. H., and Lange, F.F. (Plenum, New York, 1986), Vol. 7, pp. 6173.Google Scholar
4. Porter, J. K., Lange, F. F., and Chokshi, A. H., Am. Ceram. Soc. Bull. 66 (2), 343347 (1987).Google Scholar
5. Lio, S., Watanabe, M., Matsubara, M., and Matsuo, Y., J. Am. Ceram. Soc. 72 (10), 18801884 (1989).CrossRefGoogle Scholar
6. Homeney, J., Vaughn, W.L., and Ferber, M.K., J. Am. Ceram. Soc. 73 (2), 394402 (1990).CrossRefGoogle Scholar
7. Hansson, T., Warren, R., and Wasen, J., J. Am. Ceram. Soc. 76 (4), 841848 (1993).Google Scholar
8. Hue, F., Ph.D. Thesis, INSA de Lyon, France (1993).Google Scholar
9. Hansson, T., Swan, A. H., and Warren, R., J. Eur. Ceram. Soc. 13, 427436 (1994).Google Scholar
10. Tuffe, S., Dubois, J., Jorand, Y., Fantozzi, G., and Barbier, G., Ceram. Int. 21, 425432 (1994).CrossRefGoogle Scholar
11. Birchall, J. D., Standley, D. R., Mockford, M. J., Pigott, G. H., and Pinto, P. J., J. Mater. Sci. 7 (4), 350351 (1988).Google Scholar
12. Sanders, G. and Swain, M. V., Mater. Forum 14, 6069 (1990).Google Scholar
13. Sakai, H., Matsuhiro, K., and Furuse, Y., in Ceramics Transactions, Vol. 19: Advanced Composite Materials, edited by Sacks, M. D. (The American Ceramic Society, Westerville, OH, 1991), pp. 765771.Google Scholar
14. Fischer, W. F., Haber, R. A., and Anderson, R. M., Ceramics Transactions, Vol. 19: Advanced Composite Materials, edited by Sacks, M. D. (The American Ceramic Society, Westerville, OH, 1991), pp. 773779.Google Scholar
15. Zheng, Z., Liu, Y., and Coyle, T. W., J. Can. Ceram. Soc. 61 (4), 249254 (1992).Google Scholar
16. Chou, Y. S. and Green, D. J., J. Am. Ceram. Soc. 75 (12), 33463352 (1992).Google Scholar
17. Chou, Y. S. and Green, D.J., J. Am. Ceram. Soc. 76 (6), 14521458 (1993).Google Scholar
18. Chou, Y. S. and Green, D.J., J. Am. Ceram. Soc. 76 (8), 19851992 (1993).Google Scholar
19. Chou, Y. S. and Green, D. J., J. Eur. Ceram. Soc. 14, 303311 (1994).CrossRefGoogle Scholar
20. Belmonte, M., Moreno, R., Requena, J., Moya, J. S., and Miranzo, P., in Euro-Ceramics II, Vol. 2, Structural Ceramics and Composites, edited by Ziegler, G. and Hausner, H. (Deutsche Keramische Gesellschaft e.V., 1991), pp. 15411545.Google Scholar
21. Belmonte, M., Moreno, R., Moya, J. S., and Miranzo, P., J. Mater. Sci. 29, 179183 (1994).Google Scholar
22. Majumdar, S. and Kupperman, D., J. Am. Ceram. Soc. 72 (2), 312313 (1989).Google Scholar
23. Advanced Mechanisms of Materials, 5th ed., edited by A. P. Boresi, O. M. Sidebotton, F. B. Seely, and J. O. Smith (John Wiley and Sons Inc., Singapore, 1993).Google Scholar
24. Sakai, M., Taikabutsu Overseas 8 (2), 412 (1988).Google Scholar
25. McCluskey, P. H., Williams, R. K., Graves, R. S., and Tiegs, T. N., J. Am. Ceram. Soc. 73 (2), 461464 (1990).Google Scholar