Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-08T00:25:59.309Z Has data issue: false hasContentIssue false

Formation process of calcium vanadate nanorods and their electrochemical sensing properties

Published online by Cambridge University Press:  31 July 2012

Lizhai Pei*
Affiliation:
Key Lab of Materials Science and Processing of Anhui Province, Institute of Molecular Engineering and Applied Chemistry, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, People’s Republic of China
Yinqiang Pei
Affiliation:
Key Lab of Materials Science and Processing of Anhui Province, Institute of Molecular Engineering and Applied Chemistry, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, People’s Republic of China
Yikang Xie
Affiliation:
Key Lab of Materials Science and Processing of Anhui Province, Institute of Molecular Engineering and Applied Chemistry, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, People’s Republic of China
Chuangang Fan
Affiliation:
Key Lab of Materials Science and Processing of Anhui Province, Institute of Molecular Engineering and Applied Chemistry, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, People’s Republic of China
Diankai Li
Affiliation:
Key Lab of Materials Science and Processing of Anhui Province, Institute of Molecular Engineering and Applied Chemistry, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, People’s Republic of China
Qianfeng Zhang
Affiliation:
Key Lab of Materials Science and Processing of Anhui Province, Institute of Molecular Engineering and Applied Chemistry, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

Calcium vanadate nanorods with Ca10V6O25 phase have been synthesized by a hydrothermal process without any surfactants. Hydrothermal temperature, reaction time and calcium (Ca) raw materials play important roles in the formation and size of the calcium vanadate nanorods. The nucleation and crystal growth combined with crystal splitting process have been proposed to explain the formation and growth of calcium vanadate nanorods. The calcium vanadate nanorods are used as glassy carbon electrode-modified materials to analyze the electrochemical behaviors of tartaric acid. The calcium vanadate nanorod-modified glassy carbon electrode exhibits good performance for the electrochemical detection of tartaric acid with a detection limit of 2.4 μM and linear range of 0.005–2 mM. The analytical performance and straightforward fabrication method make the calcium vanadate nanorods promising for the development of electrochemical sensors for tartaric acid.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Filho, A.G.S., Ferreira, O.P., Santos, E.J.G., Fiho, J.M., and Alves, O.L.: Raman spectra in vanadate nanotubes revisited. Nano Lett. 4, 2099 (2004).CrossRefGoogle Scholar
2.Liu, Y., and Qian, Y.T.: Controlled synthesis of β-Mn2V2O7 microtubes and hollow microspheres. Front. Chem. Chin. 3, 467 (2008).CrossRefGoogle Scholar
3.Holtz, R.D., Filho, A.G.S., Brocchi, M., Martins, D., Durán, N., and Alves, O.L.: Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21, 185102 (2010).CrossRefGoogle ScholarPubMed
4.Yu, J.Q. and Kudo, A.: Hydrothermal synthesis of nanofibrous bismuth vanadate. Chem. Lett. 34, 850 (2005).CrossRefGoogle Scholar
5.Singh, S., Kumari, N., Varma, K.B.R., and Krupanidhi, S.B.: Synthesis, structural characterization and formation mechanism of ferroelectric bismuth vanadate nanotubes. J. Nanosci. Nanotechnol. 9, 6549 (2009).CrossRefGoogle ScholarPubMed
6.Singh, D.P., Polychronopoulou, K., Rebholz, C., and Aouadi, S.M.: Room temperature synthesis and high-temperature frictional study of silver vanadate nanorods. Nanotechnology 21, 325601 (2010).CrossRefGoogle ScholarPubMed
7.Xu, H.Y., Wang, H., Song, Z.Q., Wang, Y.W., Yan, H., and Yoshimura, M.: Novel chemical method for the synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries. Electrochim. Acta 49, 349 (2004).CrossRefGoogle Scholar
8.Zhou, Q., Shao, M.W., Que, R.H., Cheng, L., Zhuo, S.J., Tong, Y.H., and Lee, S.T.: Silver vanadate nanoribbons: A label-free bioindicator in the conversion between human serum transferrin and apotransferrin via surface-enhanced Raman scattering. Appl. Phys. Lett. 98, 139110 (2011).CrossRefGoogle Scholar
9.Jouanneau, S., Verbaere, A., and Guyomard, D.: On a new calcium vanadate: Synthesis, structure and Li insertion behavior. J. Solid State Chem. 172, 116 (2003).CrossRefGoogle Scholar
10.Tashtoush, N., Qudah, A.M., and El-Desoky, M.M.: Compositional dependence of the electrical conductivity of calcium vanadate glassy semiconductors. J. Phys. Chem. Solids 68, 1926 (2007).CrossRefGoogle Scholar
11.Nakajima, T., Isobe, M., Tsuchiya, T., Ueda, Y., and Manabe, T.: Photoluminescence property of vanadates M2V2O7 (M: Ba, Sr and Ca). Opt. Mater. 32, 1618 (2010).CrossRefGoogle Scholar
12.Pei, L.Z., Pei, Y.Q., Xie, Y.K., Yuan, C.Z., Li, D.K., and Zhang, Q.F.: Growth of calcium vanadate nanorods. CrystEngComm 14, 4262 (2012).CrossRefGoogle Scholar
13.Baudrin, E., Laruelle, S., Denis, S., Touboul, M., and Tarascon, J.M.: Synthesis and electrochemical properties of cobalt vanadates versus lithium. Solid State Ionics 123, 139 (1999).CrossRefGoogle Scholar
14.Kim, S.S., Ikuta, H., and Wakihara, M.: Synthesis and characterization of MnV2O6 as a high capacity anode material for a lithium secondary battery. Solid State Ionics 139, 57 (2001).CrossRefGoogle Scholar
15.Hara, D., Ikuta, H., Uchimoto, Y., and Wakihara, M.: Electrochemical properties of manganese vanadium molybdenum oxide as the anode for Li secondary batteries. J. Mater. Chem. 12, 2507 (2002).CrossRefGoogle Scholar
16.Inagaki, M., Morishita, T., Hirano, M., Gupta, V., and Nakajima, T.: Synthesis of MnV2O6 under autogenous hydrothermal conditions and its anodic performance. Solid State Ionics 156, 275 (2003).CrossRefGoogle Scholar
17.Zhang, F.F., Wang, X.L., Ai, S.Y., Sun, Z.D., Wan, Q., Zhu, Z.Q., Xian, Y.Z., Jin, L.T., and Yamamoto, K.: Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta 519, 155 (2004).CrossRefGoogle Scholar
18.Sudeep, P.K., Joseph, S.T.S., and Thomas, K.G.: Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 127, 6516 (2005).CrossRefGoogle ScholarPubMed
19.Wei, M., Liu, Y., Gu, Z.Z., and Liu, Z.D.: Electrochemical detection of catechol on boron-doped diamond electrode modified with Au/TiO2 nanorod composite. J. Chin. Chem. Soc. 58, 516 (2011).CrossRefGoogle Scholar
20.Kvaratskhelia, R.K., and Kvaratskhelia, E.R.: Electrochemical behavior of tartaric acid at solid electrodes in aqueous and mixed solutions. Russ. J. Electrochem. 44, 230 (2008).CrossRefGoogle Scholar
21.Galkwad, A., Silva, M., and Bendito, D.P.: Sensitive determination of periodate and tartaric acid by stopped-flow chemiluminescence spectrometry. Analyst 119, 1819 (1994).CrossRefGoogle Scholar
22.Khue, Q.T., Vu, X.H., Dang, D.V., and Nguyen, D.C.: The influence of hydrothermal temperature on SnO2 nanorod formation. Adv. Nat. Sci.: Nanosci. Nanotechnol. 1, 025210 (2010).Google Scholar
23.Ma, T., Guo, M., Zhang, M., Zhang, Y.J., and Wang, X.D.: Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology 18, 035605 (2007).CrossRefGoogle ScholarPubMed
24.Katsman, A., Yaish, Y., Rabkin, E., and Beregovsky, M.: Surface diffusion-controlled formation of nickel silicides in silicon nanowires. J. Electron. Mater. 29, 365 (2010).CrossRefGoogle Scholar
25.Dubrovskii, V.G., Sibirev, N.V., Suris, R.A., Cirlin, G.E., Harmand, J.C., and Ustinov, V.M.: Diffusion-controlled growth of semiconductor nanowires: Vapor pressure versus high vacuum deposition. Surf. Sci. 601, 4395 (2007).CrossRefGoogle Scholar
26.Tang, J. and Alivisatos, A.P.: Crystal splitting in the growth of Bi2S3. Nano Lett. 6, 2701 (2006).CrossRefGoogle ScholarPubMed
27.Dong, Y.P., Pei, L.Z., Chu, X.F., and Zhang, Q.F.: Electrochemical behavior of cysteine at a CuGeO3 nanowires-modified glassy carbon electrode. Electrochim. Acta 7, 5135 (2010).CrossRefGoogle Scholar
28.Yan, H.J., Wang, D., Han, M.J., Wan, L.J., and Bai, C.L.: Adsorption and coordination of tartaric acid enantiomers on Cu(111) in aqueous solution. Langmuir 20, 7360 (2004).CrossRefGoogle ScholarPubMed
29.Fu, Y.Z., Yuan, R., Tang, D.P., Chai, Y.Q., and Xu, L.: Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques. Colloids Surf., B 40, 61 (2005).CrossRefGoogle Scholar
30.Cai, Z.Y., Pei, L.Z., Yang, Y., Pei, Y.Q., Fan, C.G., and Fu, D.G.: Electrochemical behavior of tartaric acid at CuGeO3 nanowire modified glassy carbon electrode. J. Solid State Electrochem. 16, 2243 (2012).CrossRefGoogle Scholar
31.Zhang, J., Deng, P.H., Feng, Y.L., Kuang, Y.F., and Yang, J.J.: Electrochemical determination of ascorbic acid at γ-MnO2 modified carbon black microelectrodes. Microchim. Acta 147, 279 (2004).CrossRefGoogle Scholar
32.Xia, C. and Ning, W.: A novel bioelectrochemical ascorbic acid sensor modified with Cu4(OH)6SO4 nanorods. Analyst 136, 288 (2011).CrossRefGoogle ScholarPubMed
33.Li, Y. and Zhang, S.H.: Electrochemical behaviors of ascorbic acid and uric acid in ionic liquid. J. Dispersion Sci. Technol. 29, 1421 (2008).CrossRefGoogle Scholar
34.Fu, C.G., Song, L.N., and Fang, Y.Z.: Simultaneous determination of sugars and organic acids by coelectroosmotic capillary electrophoresis with amperometric detection at a disk-shaped copper electrode. Anal. Chim. Acta 371, 81 (1998).CrossRefGoogle Scholar