Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T05:19:21.905Z Has data issue: false hasContentIssue false

Formation of V2O5-based mixed oxides in flames

Published online by Cambridge University Press:  03 March 2011

Philippe F. Miquel
Affiliation:
Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218-2689
Cheng-Hung Hung
Affiliation:
Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218-2689
Joseph L. Katz*
Affiliation:
Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218-2689
*
b)Address correspondence to this author.
Get access

Abstract

V2O5–TiO2 and V2O5–Al2O3 mixed oxide powders were synthesized in a hydrogen-oxygen flame using VOCl3, TiCl4, and Al(CH3)3 as precursors. The particle formation processes were investigated as a function of VOCl3 concentration by laser light-scattering and by collecting particles directly onto transmission electron microscopy grids. In the V2O5–TiO2 system, the oxides condense as an intimate mixture at all three VOCl3 concentrations. Spherical particles, 40 to 70 nm in diameter, are obtained. In the V2O5–Al2O3 system, chain-like particles composed of an intimate mixture of V2O5 and Al2O3 form at the lowest VOCl3 concentration. At high VOCl3 concentrations, the chain-like particles have a core-mantle structure (a core mainly of Al2O3 and a mantle mainly of V2O5). The crystalline form and the surface area of these mixed oxides were determined by x-ray diffractometry, FT-IR spectroscopy, and BET analysis by nitrogen desorption. These measurements indicate that amorphous vanadium oxide forms at low VOCl3 concentrations, and V2O5 is obtained at the higher VOCl3 concentrations. The structure of the amorphous vanadium oxide matches that published for vanadium oxide “supported” catalysts.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hucknall, D. J., Selective Oxidation of Hydrocarbons (Academic Press, New York, 1974).Google Scholar
2Janssen, F. J. J. G., van den Kerkhof, F. M. G., Boss, H., and Ross, J. R. H., J. Phys. Chem. 91, 6633 (1987).CrossRefGoogle Scholar
3Bond, G. C., Flamerz, S., and Shukri, R., Faraday Discuss. Chem. Soc. 87, 65 (1989).CrossRefGoogle Scholar
4Bond, G. C. and Brsückman, K., Faraday Discuss. Chem. Soc. 72, 235 (1981).CrossRefGoogle Scholar
5Roozeboom, F., Mittelmeijer-Hazeleger, M. C., Moulijn, J. A., Medema, J., de Beer, V. H. J., and Gellings, P. J., J. Phys. Chem. 84, 2783 (1980).CrossRefGoogle Scholar
6Busca, G., Centi, G., Marchetti, L., and Trifirò, F., Langmuir 2, 568 (1986).CrossRefGoogle Scholar
7Vejux, A. and Courtine, P., J. Solid State Chem. 23, 93 (1978).CrossRefGoogle Scholar
8Inomata, M., Mori, K., Miyamoto, A., Ui, T., and Murakami, Y., J. Phys. Chem. 87, 754 (1983).CrossRefGoogle Scholar
9Inomata, M., Mori, K., Miyamoto, A., Ui, T., and Murakami, Y., J. Phys. Chem. 87, 761 (1983).CrossRefGoogle Scholar
10Went, G. T., Oyama, S. T., and Bell, A. T., J. Phys. Chem. 94, 4240 (1990).CrossRefGoogle Scholar
11Nakagawa, Y., Ono, T., Miyata, H., and Kubokawa, Y., J. Chem. Soc, Faraday Trans. I 79, 2929 (1983).CrossRefGoogle Scholar
12Centi, G., Pinelli, D., and Trifirò, F., J. Mol. Catal. 59, 221 (1990).CrossRefGoogle Scholar
13Centi, G., Giamello, E., Pinelli, D., and Trifirò, F., J. Catal. 130, 220 (1991).CrossRefGoogle Scholar
14Haber, J., Kozlowska, A., and Kozlowski, R., J. Catal. 102, 52 (1986).CrossRefGoogle Scholar
15Hung, C-H. and Katz, J. L., J. Mater. Res. 7, 1861 (1992).CrossRefGoogle Scholar
16Hung, C-H., Miquel, P. F., and Katz, J. L., J. Mater. Res. 7, 1870 (1992).CrossRefGoogle Scholar
17Katz, J. L. and Hung, C-H., Combust. Sci. Technol. 82, 169 (1992).CrossRefGoogle Scholar
18Chung, S. L. and Katz, J. L., Combustion and Flame 61, 271 (1985).CrossRefGoogle Scholar
19Kostkowski, H. J. and Broida, H. P., J. Opt. Soc. Am. 46, 246 (1956).CrossRefGoogle Scholar
20Dieke, G. H. and Crosswhite, H. M., J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).CrossRefGoogle Scholar
21Chung, S. L., Ph.D. Thesis, The Johns Hopkins University, Baltimore (1985). Available from University Microfilms.Google Scholar
22Dobbins, R. A. and Megaridis, C. M., Langmuir 3, 254 (1987).CrossRefGoogle Scholar
23Hung, C-H., Ph.D. Thesis, The Johns Hopkins University, Baltimore (1991). Available from University Microfilms.Google Scholar
24Fabbri, G. and Baraldi, P., Anal. Chem. 44, 1325 (1972).CrossRefGoogle Scholar
25Kozlowski, R., Pettifer, R. F., and Thomas, J. M., J. Phys. Chem. 87, 5176 (1983).CrossRefGoogle Scholar
26Eckert, H. and Wachs, I. E., J. Phys. Chem. 93, 6796 (1989).CrossRefGoogle Scholar