Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T16:33:52.176Z Has data issue: false hasContentIssue false

Formation of multiferroic thin-film heterostructure (BiAl:YIG/La:PMNT) via a wet chemical process

Published online by Cambridge University Press:  31 January 2011

Xiaomei Guo*
Affiliation:
Boston Applied Technologies, Inc., Woburn, Massachusetts 01801
Yingyin K. Zou
Affiliation:
Boston Applied Technologies, Inc., Woburn, Massachusetts 01801
Kewen K. Li
Affiliation:
Boston Applied Technologies, Inc., Woburn, Massachusetts 01801
Qiushui Chen
Affiliation:
Boston Applied Technologies, Inc., Woburn, Massachusetts 01801
Hua Jiang
Affiliation:
Boston Applied Technologies, Inc., Woburn, Massachusetts 01801
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A novel multiferroic thin-film heterostructure exhibiting both ferromagnetic (FM) and ferroelectric (FE) properties, as well as magneto-optic (MO) and electro-optic (EO) properties, was fabricated via a wet chemical route. Oxide buffer layers were used to allow the growth of ferroelectric lanthanum modified lead magnesium niobate titanate (La:PMNT) layer on top of ferromagnetic bismuth and aluminum substituted yttrium iron garnet (BiAl:YIG). X-ray diffractometer (XRD) analysis confirmed the formation of both crystalline structures. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to examine the surface and cross-section morphologies of the resulted heterostructure. Multiferroic properties of the film were investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M.Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1718 2003CrossRefGoogle ScholarPubMed
2Kimura, T., Goto, T., Shinatani, H., Ishizaka, K., Arima, T.Tokura, Y.: Magnetic control of ferroelectric polarization. Nature 426, 55 2003CrossRefGoogle ScholarPubMed
3Huang, Z.J., Cao, Y., Sun, Y., Xue, Y.Y.Chu, C.W.: Coupling between the ferroelectric and antiferromagnetic orders in YMnO3. Phys. Rev. B 56, 2623 1997CrossRefGoogle Scholar
4Kim, J.K., Kim, S.S., Kim, W.J., Bhalla, A.S.Guo, R.: Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Appl. Phys. Lett. 88, 132901 2006CrossRefGoogle Scholar
5Yuan, G.L., Baba-Kishi, K.Z., Liu, J.M., Or, S.W., Wang, Y.P.Liu, Z.G.: Multiferroic properties of single-phase Bi0.850.85La0.15FeO3 lead-free ceramics. J. Am. Ceram. Soc. 89, 3136 2006CrossRefGoogle Scholar
6Cheng, J., Yu, S., Chen, J., Meng, Z.Cross, L.E.: Dielectric and magnetic enhancements in BiFeO3-PbTiO3 solid solutions with La doping. Appl. Phys. Lett. 89, 122911 2006CrossRefGoogle Scholar
7Srinivasan, G., Rasmussen, E.T., Levin, B.J.Hayes, R.: Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys. Rev. B 65, 134402 2002CrossRefGoogle Scholar
8Cai, N., Nan, C.W., Zhai, J.Lin, Y.: Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer. Appl. Phys. Lett. 84, 3516 2004CrossRefGoogle Scholar
9Shastry, S., Srinivasan, G., Bichurin, M.I., Petrov, V.M.Tatarenko, A.S.: Microwave magnetoelectric effects in single crystal bilayers of yttrium iron garnet and lead magnesium niobate– lead titanate. Phys. Rev. B 70, 064416 2004CrossRefGoogle Scholar
10Eerenstein, W., Mather, N.D.Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759 2006CrossRefGoogle ScholarPubMed
11Zou, K.Y., Wang, Y., Li, K.Jiang, H.: Electro-optic and magneto-optic photonic band gap materials in Magneto-Optical Materials for Photonics and Recording, edited by K. Ando, W. Challener, R. Gambino, and M. Levy (Mater. Res. Soc. Symp. Proc. 834, Warrendale, PA, 2005), J1.9.1, 79CrossRefGoogle Scholar
12Li, K., Zou, K., Wang, Y., Jiang, H.Chen, X.: Ferroelectric films and multilayers with ultrahigh-dielectric constants in Ferroelectric Thin Films XII,, edited by S. Hoffmann-Eifert, H. Funakubo, V. Joshi, A.I. Kingon, and I.P. Koutsaroff (Mater. Res. Soc. Symp. Proc. 784, Warrendale, PA, 2004), C8.9.1, 363CrossRefGoogle Scholar
13Furuya, A., Baubet, C., Yoshikawa, H., Tanabe, T., Yamamoto, M., Tailhades, P., Bouet, L., Despax, C., Presmanes, L.Rousset, A.: Suppression of crack formation in garnet film by using a compound glass underlayer. IEEE Trans. Magn. 37, 2407 2001CrossRefGoogle Scholar
14Zhu, T.J., Zhao, X.B.Lu, L.: Pb(Zr0.52Ti0.48)O3/TiNi multilayered heterostructures on Si substrates for smart systems. Thin Solid Films 515, 1445 2006CrossRefGoogle Scholar