Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T22:06:36.987Z Has data issue: false hasContentIssue false

Formation of convex shaped poly(phenylsilsesquioxane) micropatterns on indium tin oxide substrates with hydrophobic-hydrophilic patterns using the electrophoretic sol-gel deposition method

Published online by Cambridge University Press:  01 May 2006

Kenji Takahashi*
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Kiyoharu Tadanaga
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Atsunori Matsuda
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
Akitoshi Hayashi
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Masahiro Tatsumisago
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Hydrophobic-hydrophilic patterns were formed on indium tin oxide substrates, and thick films of poly(phenylsilsesquioxane) (PhSiO3/2) particles, prepared by the sol-gel process, were selectively deposited onto hydrophilic areas of the substrates by electrophoresis. The films composed of PhSiO3/2 particles became transparent with morphological changes from aggregates of particles to a continuous phase after a heat treatment. After heat treatment at 200 °C, convex-shaped PhSiO3/2 micropatterns were formed on the hydrophilic region of the pattern. Moreover, the height of micropatterns was controlled by the deposition time. This patterning technique has a wide variety of applications such as fabrication of micro-optical components.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Xia, Y., Whitesides, G.M.: Soft lithography. Angew. Chem. Int. Ed. Engl. 37(5), 550 (1998).3.0.CO;2-G>CrossRefGoogle ScholarPubMed
2.Tohge, N., Matsuda, A., Minami, T., Matsuno, Y., Katayama, S., Ikeda, Y.: Fine-patterning on glass substrates by the sol-gel method. J. Non-Cryst. Solids 100(1-3), 501 (1988).Google Scholar
3.Matsuda, A., Matsuno, Y., Mitsuhashi, Y., Tohge, N., Minami, T.: Optical disk substrate fabricated by the sol-gel method. Key Eng. Mater. 150, 111 (1998).CrossRefGoogle Scholar
4.Matsuda, A., Matsuno, Y., Tatsumisago, M., Minami, T.: Fine patterning and characterization of gel films derived from methyltriethoxysilane and tetraethoxysilane. J. Am. Ceram. Soc. 81(11), 2849 (1998).Google Scholar
5.Matsuda, A., Sasaki, T., Tatsumisago, M., Minami, T.: Micropatterning on methylsilsesquioxane-phenylsilsesquioxane thick films by the sol-gel method. J. Am. Ceram. Soc. 83(12), 3211 (2000).CrossRefGoogle Scholar
6.Tohge, N., Shinmou, K., Minami, T.: Effects of UV-irradiation on the formation of oxide thin films from chemically modified metal-alkoxides. J. Sol-Gel Sci. Tech. 2(1-3), 581 (1994).CrossRefGoogle Scholar
7.Zhao, G., Tohge, N., Nishii, J.: Fabrication and characterization of diffraction gratings using photosensitive Al2O3 gel films. Jpn. J. Appl. Phys. 37(4A), 1842 (1998).CrossRefGoogle Scholar
8.Karkkainen, A.H.O., Tamkin, J.M., Rogers, J.D., Neal, D.R., Hormi, O.E., Jabbour, G.E., Rantala, J.T., Descour, M.R.: Direct photolithographic deforming of organomodified siloxane films for micro-optics fabrication. Appl. Opt. 41, 3988 (2002).Google Scholar
9.Kishida, K., Tatsumisago, M., Minami, T.: Preparation of thick silica films by combined sol-gel and electrophoretic deposition methods. J. Ceram. Soc. Jpn. 102, 336 (1994).Google Scholar
10.Nishimori, H., Tatsumisago, M., Minami, T.: Preparation of thick silica films by the electrophoretic sol-gel deposition on a stainless steel sheet. J. Ceram. Soc. Jpn. 103, 78 (1995).CrossRefGoogle Scholar
11.Nishimori, H., Tatsumisago, M., Minami, T.: Dispersity and size of silica particles constructing thick films prepared by electrophoretic sol-gel deposition. J. Ceram. Soc. Jpn. 103, 743 (1995).CrossRefGoogle Scholar
12.Nishimori, H., Tatsumisago, M., Minami, T.: Influence of size of dispersed silica particles on preparation of thick silica films by using electrophoretic sol-gel deposition. Bull. Chem. Soc. Jpn. 69, 815 (1996).Google Scholar
13.Sakamoto, R., Nishimori, H., Tatsumisago, M., Minami, T.: Preparation of titania thick films by electrophoretic sol-gel deposition using hydrothermally treated particles. J. Ceram. Soc. Jpn. 106, 1034 (1998).CrossRefGoogle Scholar
14.Matsuda, A., Sasaki, T., Hasegawa, K., Tatsumisago, M., Minami, T.: Thermal softening behavior of poly(phenylsilsesquioxane) and poly(benzylsilsesquioxane) particles. J. Ceram. Soc. Jpn. 108, 830 (2000).CrossRefGoogle Scholar
15.Katagiri, K., Hasegawa, K., Matsuda, A., Tatsumisago, M., Minami, T.: Preparation of transparent thick films by electrophoretic sol-gel deposition using phenyltriethoxysilane-derived particles. J. Am. Ceram. Soc. 81, 2501 (1998).CrossRefGoogle Scholar
16.Matsuda, A., Sasaki, T., Hasegawa, K., Tatsumisago, M., Minami, T.: Thermal softening behavior and application to transparent thick films of poly(benzylsilsesquioxane) particles prepared by the sol-gel process. J. Am. Ceram. Soc. 84, 775 (2001).CrossRefGoogle Scholar
17.Limmer, S.J., Seraji, S., Wu, Y., Chou, T.P., Nguyen, C., Cao, G.Z.: Template-based growth of various oxide nanorods by sol-gel electrophoresis. Adv. Funct. Mater. 12, 59 (2002).Google Scholar
18.Limmer, S.J., Cao, G.Z.: Sol-gel electrophoretic deposition for the growth of oxide nanorods. Adv. Mater. 15, 427 (2003).CrossRefGoogle Scholar
19.Sakurai, Y., Okuda, S., Nishiguchi, H., Nagayama, N., Yokoyama, M.: Microlens array fabrication based on polymer electrodeposition. J. Mater. Chem. 13, 1862 (2003).Google Scholar
20.Masuda, Y., Sugiyama, T., Lin, H., Seo, W.S., Koumoto, K.: Selective deposition and micropatterning of titanium dioxide thin film on self-assembled monolayers. Thin Solid Films 382(1-2), 153 (2001).CrossRefGoogle Scholar
21.Shirahata, N., Masuda, Y., Yonezawa, T., Koumoto, K.: Control over film thickness of SnO2 ultrathin film selectively deposited on a patterned self-assembled monolayer. Langmuir 18, 10379 (2002).CrossRefGoogle Scholar
22.Tadanaga, K., Morinaga, J., Fujii, T., Matsuda, A., Minami, T.: Formation of convexly shaped silica micropatterns on sol-gel derived films using a difference in surface free energy. Glass Technol. 43C, 275 (2002).Google Scholar
23.Tadanaga, K., Fujii, T., Matsuda, A., Minami, T., Tatsumisago, M.: Micropatterning of SnO2 thin films using hydrophobic-hydrophilic patterned surface. Ceram. Int. 30, 1815 (2004).Google Scholar
24.Hartmann, D.M., Kibar, O., Esener, S.C.: Optimization and theoretical modeling of polymer microlens arrays fabricated with the hydrophobic effect. Appl. Opt. 40, 2736 (2001).Google Scholar
25.Tadanaga, K., Morinaga, J., Matsuda, A., Minami, T.: Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method. Chem. Mater. 12, 590 (2000).CrossRefGoogle Scholar