Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T01:02:37.976Z Has data issue: false hasContentIssue false

Formation of buried Sb dopant profiles in silicon by pulsed laser epitaxy

Published online by Cambridge University Press:  31 January 2011

R.J. Carolissen
Affiliation:
Physics Department, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
D.K. Knoesen
Affiliation:
Physics Department, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
W.C. Sinke
Affiliation:
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098SJ, Amsterdam, The Netherlands
R. Pretorius
Affiliation:
Ion-Solid Interaction Division, Van de Graaff Group, National Accelerator Centre, P.O. Box 72, Faure, 7131, South Africa
Get access

Abstract

In this investigation buried Sb dopant profiles in single crystal silicon have been formed from evaporated layers using laser annealing. For irradiations carried out in air, severe oxidation of the surface layers inhibited epitaxy. Oxygen concentrations as high as 5 × 1017 atoms/cm2 (equivalent to about 105 nm SiO2) were measured. It was found that both the thin (less than 3 nm) Sb layer and the free volume in the a-Si, deposited by evaporation onto a cold substrate, need to be present for this degree of oxidation to take place. However, when silicon was evaporated onto a substrate heated to 350 °C, dense packing of the silicon atoms was obtained and even for irradiations in air good epitaxy (minimum yield of 7%) and no oxidation occurred. To form buried Sb profiles, laser energies only slightly higher than the threshold for epitaxy were used to prevent excessive spreading due to an increase in liquid state diffusion obtained at higher energies. Under these conditions the width of the buried Sb profile was typically about 120 nm, and up to 90% of the Sb atoms were found to occupy lattice sites.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ghandhi, S.K., VLSI Fabrication Principles, Silicon and Gallium Arsenide (John Wiley, New York, 1983), p. 606.Google Scholar
2Hill, C., Butler, A. L., and Daly, J. A., in Laser and Electron-Beam Interactions with Solids, edited by Appleton, B. R. and Celler, G. K. (Mater. Res. Soc. Symp. Proc. 4, Elsevier Science Publishing, New York, 1982), p. 579.Google Scholar
3White, C. W., Wilson, S. R., Appleton, B. R., and Young, F. W. Jr., J. Appl. Phys. 51, 738 (1980).CrossRefGoogle Scholar
4Fogarassy, E., Stuck, R., Grob, J. J., and Siffert, P., J. Appl. Phys. 52, 1076 (1981).CrossRefGoogle Scholar
5Stuck, R., Fogarassy, E., Muller, J. C., Hodeau, M., Wattiaux, A., and Siffert, P., Appl. Phys. Lett. 38, 715 (1981).CrossRefGoogle Scholar
6Cullis, A. G., Webber, H. C., and Bailey, P., J. Phys. E: Sci. Instrum. 12, 688 (1979).CrossRefGoogle Scholar
7Baeri, P. and Campisano, S.U., Laser Annealing of Semiconductors, edited by Poate, J. M. and Mayer, J. W. (Academic Press, New York, 1982), p. 75.CrossRefGoogle Scholar
8Marais, T.K., Allie, M.S., Pretorius, R., and Shackleton, M.O., S. Afr. J. Phys. 13, 103 (1990).Google Scholar
9Peercy, P. S., Thompson, M. O., and Tsao, J. Y., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Picraux, S. T., and Williams, J. S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 15.Google Scholar
10Bell, A. E., RCA Rev. 40, 295 (1979).Google Scholar
11Perry, R.H., Chilton, C. H., and Kirkpatrick, S.D., Perry's Chemical Engineers' Handbook, 4th ed. (1963).Google Scholar
12Toulemonde, M., Heddache, R., Nielsen, F., and Siffert, P., J. Appl. Phys. 56, 1878 (1984).CrossRefGoogle Scholar
13Allen, F. G., J. Appl. Phys. 28, 1510 (1957).CrossRefGoogle Scholar
14Shtyrkov, E. I., Khaibullin, I. B., Zaripov, M. M., Galyatudinov, M. F., and Bayasitov, R. M., Sov. Phys. Semicond. (Eng. Transl.) 9, 1309 (1975).Google Scholar
15Jellison, G.E. Jr., and Modine, F.A., Appl. Phys. Lett. 41, 180 (1982).CrossRefGoogle Scholar
16Poate, J.M., Nucl. Instrum. Methods 209/210, 211 (1983).CrossRefGoogle Scholar
17Lowndes, D. H., Wood, C.W., and Narayan, J., Phys. Rev. Lett. 52, 7 (1984).CrossRefGoogle Scholar
18Goldsmith, A., Handbook of Thermophysical Properties of Solid Materials (Macmillan, New York, 1961).Google Scholar
19CRC Handbook of Chemistry and Physics, 63rd ed., edited by Weast, R.C. (CRC Press, Cleveland, OH, 1982-1983).Google Scholar
20Bell, R. O., Toulemonde, M., and Siffert, P., Appl. Phys. Lett. 19, 313 (1979).Google Scholar
21Thompson, M. O. and Galvin, G. J., in Laser-Solid Interactions and Transient Thermal Processing of Materials, edited by Narayan, J., Brown, W. L., and Lemons, R. A. (Mater. Res. Soc. Symp. Proc. 13, Elsevier Science Publishing, New York, 1983), p. 131.Google Scholar
22Cullis, A. G., Webber, H. C., and Chew, N. G., in Laser and Electron-Beam Interactions with Solids, edited by Appleton, B.R. and Celler, G. K. (Mater. Res. Soc. Symp. Proc. 4, Elsevier Science Publishing, New York, 1982), p. 131.Google Scholar
23Campisano, S. U. and Poate, J. M., Appl. Phys. Lett. 47, 485 (1985).CrossRefGoogle Scholar
24Frank, W., Gosele, U., Mehrer, H., and Seeger, A., Diffusion in Crystalline Solids, edited by Murch, G. E. and Nowick, A. J. (Academic Press, San Diego, CA, 1984).Google Scholar
25Jost, W., Diffusion in Solids, Liquids, Gases (Academic Press Inc., San Diego, CA, 1952), p. 23.Google Scholar
26White, C.W., Pronko, D.P., Wilson, S.R., Appleton, B.R., Narayan, J., and Young, R.T., J. Appl. Phys. 50, 3261 (1979).CrossRefGoogle Scholar
27Aspnes, D.E., Poate, J. M., Rozgonyi, G.A., Sheng, T.T., and Celler, G. K., Symp. Laser and Electron Beam Processing of Electronic Materials (Electrochemical Society, Los Angeles, 1979), unpublished.Google Scholar
28Celler, G.K., Leamy, H.J., Aspnes, D.E., Doherty, C.J., Sheng, T.T., and Trimble, L. E., in Laser and Electron-Beam Solid Interactions and Materials Processing, edited by Gibbons, J. F., Hess, L. D., and Sigmon, T. W. (Mater. Res. Soc. Symp. Proc. 1, Elsevier Science Publishing, New York, 1981), p. 435.Google Scholar
29Foti, G., Bean, J. C., and Poate, J. M., Appl. Phys. Lett. 36, 840 (1980).CrossRefGoogle Scholar
30Carolissen, R. J., M. S. Thesis, University of the Western Cape, Bellville, South Africa (1989).Google Scholar
31Carolissen, R.J. and Pretorius, R., unpublished work.Google Scholar
32Gonzalez-Hernandez, J., Martin, D., Chao, S. S., and Tsu, R., Appl. Phys. Lett. 45, 101 (1984).CrossRefGoogle Scholar