Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T00:47:15.606Z Has data issue: false hasContentIssue false

Formation of BaCeO3 and its influence on microstructure of sintered/melt-textured Y-Ba-Cu-O oxides with CeO2 addition

Published online by Cambridge University Press:  03 March 2011

Chan-Joong Kim
Affiliation:
Superconductivity Research Department, Korea Atomic Energy Research Institute, P.O. Box 7, Daedukdanji, Daejon, 305–606, Korea
Ki-Baik Kim
Affiliation:
Superconductivity Research Department, Korea Atomic Energy Research Institute, P.O. Box 7, Daedukdanji, Daejon, 305–606, Korea
Dong-Yeon Won
Affiliation:
Superconductivity Research Department, Korea Atomic Energy Research Institute, P.O. Box 7, Daedukdanji, Daejon, 305–606, Korea
Hong-Chul Moon
Affiliation:
Department of Materials Science and Engineering, Choongnam National University, Daeduk Science Town, Daejon, 301-764, Korea
Dong-Soo Suhr
Affiliation:
Department of Materials Science and Engineering, Choongnam National University, Daeduk Science Town, Daejon, 301-764, Korea
S.H. Lai
Affiliation:
Center for Materials Science and Engineering, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
P.J. McGinn
Affiliation:
Center for Materials Science and Engineering, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
Get access

Abstract

The formation of BaCeO3 and its effects on microstructure were studied in sintered/melt-textured Y-Ba-Cu-O oxides containing 5 wt. % CeO2 and various amounts of Y2Ba1Cu1O5. The added CeO2 was converted to fine particles of BaCeO3 near 930 °C, which is the conventional sintering temperature for Y-Ba–Cu-O. Y2Ba1Cu1O5 and CuO are formed as by-products of the reaction between CeO2 and Y1Ba2Cu3O7−y phase. The CeO2 addition reduced the particle size of Y2Ba1Cu1O5 which was trapped in the Y1Ba2Cu3O7−y matrix after the melt-texture growth. During the peritectic decomposition stage of Y1Ba2Cu3O7−y phase into Y2Ba1Cu1O5 and liquid phase, the morphology of the decomposed Y2Ba1Cu1O5 was changed from a blocky shape in the undoped sample to an acicular shape of high anisotropy in the CeO2-added sample. The formation of the highly anisotropic Y2Ba1Cu1O5 particles appears to be responsible for the refinement of Y2Ba1Cu1O5 particle after the melt-texture processing.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).CrossRefGoogle Scholar
2Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).Google Scholar
3Murakami, M., Morita, M., Doi, K., and Miyamoto, M., Jpn. J. Appl. Phys. 28, LI189 (1989).CrossRefGoogle Scholar
4Murakami, M., Gotoh, S., Koshizuka, N., Tanaka, S., Matsushita, T., Kambe, S., and Kitazawa, K., Cryogenics 30, 390 (1990).Google Scholar
5Osamura, K., Matsukura, N., Kusumoto, Y., Ochiai, S., Ni, B., and Matsshita, T., Jpn J. Appl. Phys. 29, L1621 (1990).CrossRefGoogle Scholar
6McGinn, P.J., Chen, W., Zhu, N., Tan, L., Varanasi, C., and Sengupta, S., Appl. Phys. Lett. 59, 120 (1991).CrossRefGoogle Scholar
7Schilling, O. F., Yang, Y., Grovenor, C. R. M., and Beduz, C., Physica C 170, 123 (1990).Google Scholar
8Kim, C-J., Kim, K-B., Lee, K-W., Lee, C-T., Hong, G-W., Chang, I-S., and Won, D-Y., Mater. Lett. 11, 241 (1991).Google Scholar
9Ogawa, N., Hirabayashi, I., and Tanaka, S., Physica C 177, 101 (1991).CrossRefGoogle Scholar
10Ogawa, N., Yoshida, M., and Hirabayashi, I., ISTEC J. 4, 31 (1991).Google Scholar
11Wang, Z. L., Goyal, A., and Kroger, D. M., Phys. Rev. B 47, 5373 (1993).CrossRefGoogle Scholar
12Yamaguchi, K., Murakami, M., Fujimoto, H., Gotoh, S., Oyama, T., Shiohara, Y., Koshizuka, N., and Tanaka, S., J. Mater. Res. 6, 1404 (1991).CrossRefGoogle Scholar
13Kim, C-J., Moon, H-C., Kim, K-B., Kwon, S-C., Suhr, D-S., Suh, I-S., and Won, D-Y., J. Mater. Sci. Lett. 11, 831 (1992).Google Scholar
14Kim, C-J., Kim, K-B., Lee, K-W., and Won, D-Y., Korean J. Mater. Res. 2, 202 (1992).Google Scholar
15Kim, C-J., Kim, K-B., Hong, G-W., Won, D-Y., Kim, B-H., Kim, C-T., Moon, H-C., and Suhr, D-S., J. Mater. Res. 7, 2349 (1992).CrossRefGoogle Scholar
16Kim, C-J., Kim, K-B., Kwon, S-C., Chang, I-S., and Won, D-Y., J. Mater. Sci. Ixtt. 11, 346 (1992).Google Scholar
17Ogawa, N. and Yoshida, H., Advances in Superconductivity IV, edited by Kajimura, K. and Hayakawa, H. (Springer-Verlag, Tokyo, 1991), p. 455.Google Scholar
18Jin, S., Kammlott, G. W., Tiefel, T. H., Kodas, T. T., Ward, T. L., and Kroger, D. M., Physica C 181, 57 (1991).Google Scholar
19McGinn, P., Zhu, Z., Chen, W., Sengupta, S., and Li, T., Physica C 176, 203 (1991).Google Scholar
20Rodriguez, M. A., Chen, B-J., and Snyder, R., Physica C 195, 185 (1992).Google Scholar
21Varanasi, C. and McGinn, P.J., unpublished.Google Scholar
22Varanasi, C. and McGinn, P.J., Physica C 207, 79 (1993).Google Scholar
23Chen, Y. L., Zhang, L., Chan, H. M., and Harmer, M. P., J. Mater. Res. (1994, in press).Google Scholar