Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T15:00:28.106Z Has data issue: false hasContentIssue false

The formation of a–Fe2O3 monodispersed particles in solution

Published online by Cambridge University Press:  31 January 2011

M.P. Morales
Affiliation:
Instituto de Ciencia de Materiales, C.S.I.C., Serrano, 115 dpdo. 28006 Madrid, Spain
T. González-Carreño
Affiliation:
Instituto de Ciencia de Materiales, C.S.I.C., Serrano, 115 dpdo. 28006 Madrid, Spain
C.J. Serna
Affiliation:
Instituto de Ciencia de Materiales, C.S.I.C., Serrano, 115 dpdo. 28006 Madrid, Spain
Get access

Abstract

Uniform α–Fe2O3 particles of varying axial ratios have been prepared from hydrolyzed ferric chloride solutions at 100 °C. In the absence of phosphate anions, spherical particles were obtained by a mechanism that follows the classical LaMer and Dinegar scheme. However, in the presence of phosphates ellipsoidal particles were observed, with their formation taking place through an aggregation process from smaller primary particles of α–Fe2O3. It is also shown that all particles are monocrystalline irrespective of their formation mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Matijević, E. and Scheiner, P., J. Colloid Interface Sci. 63, 509 (1978).CrossRefGoogle Scholar
2.Ozaki, M., Kratohvil, S., and Matijević, E., J. Colloid Interface Sci. 102, 146 (1984).CrossRefGoogle Scholar
3.Ishikawa, T. and Matijević, E., Langmuir 4, 26 (1988).CrossRefGoogle Scholar
4.Flynn, C. M., Chem. Rev. 84, 31 (1984).CrossRefGoogle Scholar
5.De Blanco, E. K., Blesa, M. A., and Liberman, S. J., React. Solids. 1, 189 (1986).CrossRefGoogle Scholar
6.Hamada, S. and Matijević, E., J. Chem. Soc. Faraday Trans. I 78, 2147 (1982).CrossRefGoogle Scholar
7.LaMer, V. K. and Dinegar, R.H., J. Am. Chem. Soc. 72, 4847 (1950).CrossRefGoogle Scholar
8.Brinker, C. J. and Scherer, G. W., in Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing (Academic Press, London, 1990), pp. 277284.Google Scholar
9.Murphy, P. J., Posner, A. M., and Quirk, J. P., J. Colloid Interface Sci. 56, 270; 56, 284; 56, 298; 56, 312 (1976).CrossRefGoogle Scholar
10.Díaz-Güemes, M. I., González-Carreño, T., Palacios, J. M., and Serna, C. J., J. Mater. Sci. Lett. 7, 671 (1978).CrossRefGoogle Scholar
11.Andrés-Verges, M., Mifsud, A., and Serna, C.J., J. Chem. Soc. Faraday Trans. 86, 959 (1990).CrossRefGoogle Scholar
12.Ocaña, M. and Matijević, E., J. Mater. Res. 5, 1083 (1990).CrossRefGoogle Scholar
13.Azároff, L. V., in Elements of X-ray Crystallography (McGraw- Hill, New York, 1968), pp. 549–552.Google Scholar
14.Serna, C. J., Ocaña, M., and Iglesias, J. E., J. Phys. C 20, 472 (1987).Google Scholar
15.Ocaña, M., Fornés, V., García-Ramos, J. V., and Serna, C. J., J. Solid State Chem. 75, 364 (1988).CrossRefGoogle Scholar
16.Ocaña, M., Serna, C. J., and Matijević, E., Mater. Lett. 12, 32 (1991).CrossRefGoogle Scholar
17.Stöber, W., Fink, A., and Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
18.Jean, J.H. and Ring, T.A., 38 Proc. Inst. Ceram. 11 (1986).Google Scholar
19.Ozaki, M., Suzuki, H., Takahashi, K., and Matijević, E., J. Colloid Interface Sci. 113, 76 (1986).CrossRefGoogle Scholar
20.Hsu, W. P., Rönnquist, L., and Matijević, E., Langmuir 4, 31 (1988).CrossRefGoogle Scholar
21.Sugimoto, T. and Matijević, E., J. Colloid Interface Sci. 74, 227 (1980).CrossRefGoogle Scholar
22.Wolska, E. and Schwertmann, U., Z. Krystallogr. 189, 223 (1989).CrossRefGoogle Scholar
23.Parfitt, R.L., Atkinson, R.J., and Smart, R. St. C., Soil Sci. Soc. Am. Proc. 39, 837 (1975).CrossRefGoogle Scholar
24.Barron, V., Herruzo, M., and Torrent, J., Soil Sci. Soc. Am. Proc. 52, 647 (1988).CrossRefGoogle Scholar