Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T01:35:33.121Z Has data issue: false hasContentIssue false

Formation kinetics of PbZrxTi1−xO3 thin films

Published online by Cambridge University Press:  03 March 2011

Chi Kong Kwok
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061–0237
Seshu B. Desu*
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061–0237
*
a)Author to whom all correspondence should be addressed.
Get access

Abstract

The pyrochlore to perovskite transition in sputtered PZT thin films has been studied using SEM and XRD. The films were annealed in the temperature range between 350 °C and 750 °C, and the transition temperature for pyrochlore to perovskite transition was found to be around 525 °C. Isothermal annealing was used to study the nucleation and growth kinetics of the perovskite phase. The results showed a linear growth rate for the perovskite phase, thereby indicating an interface controlled process. Also, the growth was found to be isotropic in two dimensions parallel to the plane of the substrate. The nucleation of the perovskite phase was found to be random. The effective activation energy of the perovskite transition was found to be 494 kJ/mol using Avrami's approach.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Okuyama, M., Matsui, Y., Nakano, H., Nakagawa, T., and Hamakawa, Y., Jpn. J. Appl. Phys. 18 (8), 16331634 (1979).CrossRefGoogle Scholar
2Matsui, Y., Okuyama, M., Fujita, N., and Hamakawa, Y., J. Appl.Phys. 52 (8), 51075111 (1981).CrossRefGoogle Scholar
3Iijima, K., Tomita, Y., Takayama, R., and Ueda, I., J. Appl. Phys. 60 (1), 361367 (1986).CrossRefGoogle Scholar
4Takayama, R. and Tomita, Y., J. Appl. Phys. 65 (4), 16661670 (1989).CrossRefGoogle Scholar
5Castellano, R., Ferroelectrics 28, 387389 (1980).CrossRefGoogle Scholar
6Krupanidhi, S., Maffei, N., Sayer, M., and El-Assal, K., J. Appl.Phys. 54 (11), 66016609 (1983).CrossRefGoogle Scholar
7Okada, A., J. Appl. Phys. 48 (7), 29052909 (1977).CrossRefGoogle Scholar
8Sreenivas, K., Sayer, M., and Garrett, P., Thin Solid Films 172, 251267 (1989).CrossRefGoogle Scholar
9Adachi, M., Matsuzaki, T., Yamada, T., Shiosaki, T., and Kawabata, A., Jpn. J. Appl. Phys. 26 (4), 550553 (1987).CrossRefGoogle Scholar
10Nakagawa, T., Yamaguchi, J., Okuyama, M., and Hamakawa, Y., Jpn. J. Appl. Phys. 21 (10), L655L656 (1982).CrossRefGoogle Scholar
11Dormans, G., de Keeijser, M., and van Veldhoven, P., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992).Google Scholar
12Dey, S. and Zuleeg, R., Ferroelectrics 108, 3746 (1990).CrossRefGoogle Scholar
13Carrano, J., Sudhama, C., Lee, J., Tasch, A., and Miller, W., IEDM 89, 255258.Google Scholar
14Fukushima, J., Kodaira, K., and Marsushita, T., J. Mater. Sci. 19, 595598 (1984).CrossRefGoogle Scholar
15Saenger, K., Roy, R., Etzold, K., and Cuomo, J., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), pp. 115120.Google Scholar
16Baba-Kishi, K. and Randall, C., Ferroelectrics 93, 329333 (1989).CrossRefGoogle Scholar
17Roy, R., Etzold, K., and Cuomo, J., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), pp. 141152.Google Scholar
18Okada, A., J. Appl. Phys. 49 (8), 44954499 (1978).CrossRefGoogle Scholar
19Randall, C., Barber, D., and Whatmore, R., J. Mater. Sci. 22, 925931 (1987).CrossRefGoogle Scholar
20Chen, K. and Mackenzie, J., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), pp. 663668.Google Scholar
21Cullity, B., Elements of X-ray Diffraction (Addison-Wesley Co., Reading, MA, 1956), p. 261.Google Scholar
22Kwok, C., Desu, S., and Kammerdiner, L., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), pp. 8389.Google Scholar
23Burke, J. and Turnbull, D., The Kinetics of Phase Transformations in Metals (Pergamon Press, Oxford, 1965).Google Scholar
24Christian, J., The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon Press, Oxford, 1975).Google Scholar