Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T20:49:47.712Z Has data issue: false hasContentIssue false

Formation, evolution, and degradation of nanostructured covalent thin films deposited by low-energy cluster beam deposition

Published online by Cambridge University Press:  01 July 2006

Luisa D'Urso
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, Catania 95125 Italy
A. Alessandro Scalisi
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, Catania 95125 Italy
Corinna Altamore
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, Catania 95125 Italy
Giuseppe Compagnini*
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, Catania 95125 Italy
*
a) Address all correspondence to this author. e-mail: [email protected] This paper was selected as the Outstanding Meeting Paper for the 2005 MRS Fall Meeting Symposium Q Proceedings, Vol. 887.
Get access

Abstract

Low-energy cluster beam deposition (LECBD) is considered an intriguing technique for obtaining thin layers with well-defined structures at the nano- and mesoscale levels, allowing novel optical, electronic, and magnetic properties. The produced layers are highly porous and extremely reactive due to the high surface to volume ratio and must be characterized with in situ techniques to study their original composition and their evolution once exposed to reactive gases. In this work, we present a general overview and some results on the formation, evolution, and deposition of silicon and carbon cluster beams produced using a laser vaporization source.

Type
Outstanding Meeting Papers
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Castleman, A.W., Bowen, K.H.: Clusters: Structure, energetics, and dynamics of intermediate states of matter. J. Phys. Chem. 100, 12911 (1996).CrossRefGoogle Scholar
2.Eberhard, W.: Clusters as new materials. Surf. Sci. 500, 242 (2002).CrossRefGoogle Scholar
3.Pignataro, B., De Bonis, A., Compagnini, G., Sassi, P., Cataliotti, R.S.: The role of micro- and nanomorphology of rough silver surfaces of different nature in surface-enhanced Raman scattering effect: A combined study of scanning force microscopy and low-frequency Raman modes. J. Chem. Phys. 113, 5947 (2000).CrossRefGoogle Scholar
4.Hopkins, J.B., Langridge, P.R.R., Morse, M.D., Smalley, R.E.: Supersonic metal cluster beams of refractory metals: Spectral investigations of ultracold Mo2. J. Chem. Phys. 78, 1627 (1983).CrossRefGoogle Scholar
5.Rohlfing, R.A., Cox, D.M., Kaldor, A.: Production and characterization of supersonic carbon cluster beams. J. Chem. Phys. 81, 3322 (1984).CrossRefGoogle Scholar
6.Bower, J.E., Jarrold, M.F.: Properties of deposited size-selected clusters: Reactivity of deposited silicon clusters. J. Chem. Phys. 97, 8312 (1992).CrossRefGoogle Scholar
7.Dupuis, V., Favre, L., Stanescu, S., Tuaillon-Combes, J., Bernstein, E., Perez, A.: Magnetic assembled nanostructured from pure and mixed Co-based clusters. J. Phys.: Condens. Matter 16, S2231 (2004).Google Scholar
8.Siciliano, P., Taurino, A.M., Toccoli, T., Pallaoro, A., Iannotta, S., Milani, P.: Novel inorganic and organic-inorganic hybrid nanostructured thin film for gas microsensors prepared by supersonic cluster beam deposition. Chem. Sensors 20, 368 (2004).Google Scholar
9.Perez, A., Melinon, P., Dupuis, V., Jensen, P., Prevel, B., Tuaillon, J.: Cluster assembled materials: A novel class of nanostructured solids with original structures and properties. J. Phys. D 30, 709 (1997).CrossRefGoogle Scholar
10.Wiley, W.C., McLaren, I.H.: Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instr. 26, 1150 (1955).CrossRefGoogle Scholar
11.Compagnini, G., D’Urso, L., Puglisi, O.: Mass and velocity distributions of supersonic cluster beams. Mater. Sci. Eng. 2005, in press.Google Scholar
12.Neuendorf, R., Palmer, R.E., Smith, R.: Low energy deposition of size-selected Si clusters onto graphite. Chem. Phys. Lett. 333, 304 (2001).CrossRefGoogle Scholar
13.Jones, R.O., Clare, B.W., Jennings, P.J.: Si–H clusters, defects, and hydrogenated silicon. Phys. Rev. B 64, 125203 (2002).CrossRefGoogle Scholar
14.Brodsky, M.H., Cardona, M., Cuomo, J.J.: Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering. Phys. Rev. B 16, 3556 (1977).CrossRefGoogle Scholar
15.Gupta, P., Dillon, A.C., Braker, A.S., George, S.M.: FTIR studies of water and deuterium oxide decomposition on porous silicon surfaces. Surf. Sci. 245, 360 (1991).CrossRefGoogle Scholar
16.Prokes, S.M., Glembocki, O.J.: Role of interfacial oxide-related defects in the red-light emission in porous silicon. Phys. Rev. B 49, 2238 (1994).CrossRefGoogle ScholarPubMed
17.Ledoux, G., Guillois, O., Porterat, D., Reynaud, C., Huisken, F., Kohn, B., Paillard, V.: Photoluminescence properties of silicon nanocrystals as a function of their size. Phys. Rev. B62, 15942 (2000).CrossRefGoogle Scholar
18.Chipara, M., Zaleski, J.M., Hui, D., Du, C., Pan, N.: Electron spin resonance on carbon nanotubes-polymer composites. J. Polym. Sci., Part B: Polym. Phys. 43, 3406 (2005).CrossRefGoogle Scholar
19.Koudoumas, E., Kokkinaki, O., Konstantaki, M., Couris, S., Korovin, S., Detkov, P., Kuznetsov, V., Pimenov, S., Pustovoi, V.: Onion-like carbon and diamond nanoparticles for optical limiting. Chem. Phys. Lett. 357, 336 (2002).CrossRefGoogle Scholar
20.Casari, C.S., LiBassi, A., Ravagnan, L., Siviero, F., Lenardi, C., Piseri, P., Bongiorno, G., Bottani, C.E., Milani, P.: Chemical and thermal stability of carbyne-like structures in cluster-assembled carbon films. Phys. Rev. 69, 075422 (2004).CrossRefGoogle Scholar
21.Compagnini, G.: Raman spectroscopy for carbon based amorphous thin films, in Materials for Space Applications edited by Chipara, M., Edwards, D.L., Benson, R.S., and Phillips, S. (Mater. Res. Soc. Symp. Proc. 851, Warrendale, PA, 2005), p. 41.Google Scholar
22.Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).CrossRefGoogle Scholar
23.Compagnini, G., Battiato, S., Puglisi, O., Baratta, G.A., Strazzulla, G.: Ion irradiation of sp rich amorphous carbon thin films: A vibrational investigation. Carbon 43, 3025 (2005).CrossRefGoogle Scholar
24.Bellamy, L.J.: The Infra-red Spectra of Complex Molecules (Chapman and Hall, London, UK, 1975).CrossRefGoogle Scholar