Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T02:06:25.279Z Has data issue: false hasContentIssue false

First-principle study on thermodynamic property of superhard BC2N under extreme conditions

Published online by Cambridge University Press:  07 July 2014

Ping Zhou
Affiliation:
School of Physics, Chongqing University, Chongqing 401331, China; School of Science, Chongqing Jiaotong University, Chongqing 400074, China; and School of Civil Engineering & Architecture, Chongqing Jiaotong University, Chongqing 400074, China
Chenghua Hu
Affiliation:
School of Science, Chongqing Jiaotong University, Chongqing 400074, China; and School of Civil Engineering & Architecture, Chongqing Jiaotong University, Chongqing 400074, China
Zhifeng Liu
Affiliation:
School of Physics, Chongqing University, Chongqing 401331, China
Feng Wang
Affiliation:
School of Science, Chongqing Jiaotong University, Chongqing 400074, China; and School of Civil Engineering & Architecture, Chongqing Jiaotong University, Chongqing 400074, China
Mu Zhou
Affiliation:
School of Science, Chongqing Jiaotong University, Chongqing 400074, China
Chunlian Hu
Affiliation:
School of Science, Chongqing Jiaotong University, Chongqing 400074, China; and School of Civil Engineering & Architecture, Chongqing Jiaotong University, Chongqing 400074, China
Zhou Zheng
Affiliation:
Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, China
Yanling Ji
Affiliation:
Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621900, China
Xinqiang Wang*
Affiliation:
School of Physics, Chongqing University, Chongqing 401331, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this study, thermodynamic properties of BC2N under extreme conditions have been reported by using first-principle calculations and quasi-harmonic Debye model. Isochoric heat capacity (Cv) of BC2N at normal temperature and pressure is 23.15 kJ mol−1 K−1 and it increases with the temperature and decreases with the pressure. In the low temperature region, pressure has no obvious influence on phonons and thus the decrease of Cv is very slow. In the medium temperature region, the decrease of Cv becomes steep. The reason is that high pressure plays an important role in controlling the vibration of atoms. In the high temperature region, the decrease of Cv becomes slow. Debye temperature (θ) decreases with the temperature. However, the tendency is not obvious in the low temperature region but very clear in high temperature. Moreover, θ increases with pressure and the amplitude is larger in higher temperature. Because of the four covalent bonds with different strength and distribution asymmetric thermal expansion along different axes occurs. The value of thermal expansion coefficient along c axis is more than that of along a and b axes.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kaner, R.B., Gilman, J.J., and Tolbert, S.H.: Designing superhard materials. Science 308, 1268 (2005).Google Scholar
Bundy, F.P.: Pressure-temperature phase diagram of elemental carbon. Physica A 156, 169 (1989).CrossRefGoogle Scholar
Solozhenko, V.L.: Boron nitride phase diagram. State of the art. High Pressure Res. Int. J. 13, 199 (1995).Google Scholar
Nakano, S., Akaishi, M., Sasaki, T., and Yamaoka, S.: Segregative crystallization of several diamond-like phases from the graphitic BC2N without an additive at 7.7 GPa. Chem. Mater. 6, 2246 (1994).Google Scholar
Knittle, E., Kaner, R.B., Jeanloz, R., and Cohen, M.: High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions. Phys. Rev. B 51, 12149 (1995).CrossRefGoogle ScholarPubMed
Komatsu, T., Nomura, M., Kakudate, Y., and Fujiwara, S.: Synthesis and characterization of a shock-synthesized cubic B–C–N solid solution of composition BC2.5N. J. Mater. Chem. 6, 1799 (1996).Google Scholar
Solozhenko, V.L., Dub, S.N., and Novikov, N.V.: Mechanical properties of cubic BC2N, a new superhard phase. Diamond Relat. Mater. 10, 2228 (2001).Google Scholar
Zhao, Y., He, D.W., Daemen, L.L., Shen, T.D., Schwarz, R.B., Zhu, Y., Bish, D.L., Huang, J., Zhang, J., and Shen, G.: Superhard BCN materials synthesized in nanostructured bulks. J. Mater. Res. 7, 3139 (2002).Google Scholar
Lambrecht, W.R. and Segall, B.: Electronic structure of (diamond C)/(sphalerite BN)(110) interfaces and superlattices. Phys. Rev. B 40, 9909 (1989).CrossRefGoogle Scholar
Tateyama, Y., Ogitsu, T., Kusakabe, K., Tsuneyuki, S., and Itoh, S.: Proposed synthesis path for heterodiamond BC2N. Phys. Rev. B 55, R10161 (1997).CrossRefGoogle Scholar
Zhang, R.Q., Chan, K.S., Cheung, H.F., and Lee, S.T.: Energetics of segregation in β-C2BN. Appl. Phys. Lett. 75, 2259 (1999).Google Scholar
Zheng, J.C., Huan, C.H.A., Wee, A.T.S., Wang, R.Z., and Zheng, Y.M.: Ground-state properties of cubic C-BN solid solutions. J. Phys.-Condens. Matter 11, 927 (1999).Google Scholar
Sun, H., Jhi, S.H., Roundy, D., Cohen, M.L., and Louie, S.G.: Structural forms of cubic BC2N. Phys. Rev. B 64, 094108 (2001).CrossRefGoogle Scholar
Lu, J.Y. and Gao, S.P.: Theoretical ELNES fingerprints of BC2N polytypes. Comput. Mater. Sci. 68, 335 (2013).Google Scholar
Zhu, T. and Gao, S.P.: GW calculations of the band gaps of BC2N polytypes. Eur. Phys. J. B 85, 285 (2012).Google Scholar
Azevedo, S.: Energetic and electronic structure of BC2N compounds. Eur. Phys. J. B 44, 203 (2005).Google Scholar
Zhang, Y., Sun, H., and Chen, C.F.: Superhard cubic BC2N compared to diamond. Phys. Rev. Lett. 93 195504 (2004).Google Scholar
Payne, M.C., Teter, M.P., Allan, D.C., Arias, T., and Joannopoulos, J.: Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
Milman, V., Winkler, B., White, J., Pickard, C., Payne, M., Akhmatskaya, E., and Nobes, R.: Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. Int. J. Quantum Chem. 77, 895 (2000).3.0.CO;2-C>CrossRefGoogle Scholar
Blanco, M.A., Francisco, E., and Luana, V.: GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57 (2004).Google Scholar
Perdew, J.P. and Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981).Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
Hammer, B., Hansen, L.B., and Nørskov, J.K.: Improved adsorption energetics within density functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59, 7413 (1999).Google Scholar
Perdew, J.P., Chevary, J., Vosko, S., Jackson, K.A., Pederson, M.R., Singh, D., and Fiolhais, C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992).Google Scholar
Wu, Z.G. and Cohen, R.E.: More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006).Google Scholar
Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., and Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).Google Scholar
Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).Google Scholar
Ren, W.Y., Wang, F., Zheng, Z., Xu, P.C., and Sun, W.G.: Elastic and thermodynamic properties of fcc-6Li2O under high temperatures and pressures. J. Nucl. Mater. 404, 116 (2010).Google Scholar
Francisco, E., Recio, J.M., Blanco, M.A., Pendás, A.M., and Costales, A.: Quantum-mechanical study of thermodynamic and bonding properties of MgF2. J. Phys. Chem. A 102, 1595 (1998).Google Scholar
Poirier, J.P.: Introduction to the Physics of the Earth's Interior, 2nd ed. (Cambridge Univ. Press, Cambridge, England, 2000), pp. 1415.Google Scholar
Flórez, M., Recio, J.M., Francisco, E., Blanco, M.A., and Pendás, A.M.: First-principles study of the rocksalt–cesium chloride relative phase stability in alkali halides. Phys. Rev. B 66, 144112 (2002).Google Scholar
Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349 (1952).Google Scholar
Solozhenko, V.L., Andrault, D., Fiquet, G., Mezouar, M., and Rubie, D.C.: Synthesis of superhard cubic BC2N. Appl. Phys. Lett. 78, 1385 (2001).Google Scholar
Guo, X.J., Liu, Z.Y., Luo, X.G., Yu, D.L., He, J.L., Tian, Y.J., Sun, J., and Wang, H.T.: Theoretical hardness of the cubic BC2N. Diamond Relat. Mater. 16, 526 (2007).Google Scholar
Fan, X.F., Wu, H.Y., Shen, Z.X., and Kuo, J.L.: A first-principle study on the structure, stability and hardness of cubic BC2N. Diamond Relat. Mater. 18, 1278 (2009).CrossRefGoogle Scholar
Francis, B.: Finite elastic strain of cubic crystals. Phys. Rev. 71, 809 (1947).Google Scholar
Debye, P.: Zur theorie der spezifischen wärmen. Ann. Phys. 344, 789839 (1912).Google Scholar
Petit, A.T. and Dulong, P.L.: Recherchés sur quelques points importants de la theorie de la cheaeur. Ann. Phys. 10, 395 (1819).Google Scholar