Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T16:50:29.511Z Has data issue: false hasContentIssue false

First report on entire sets of experimentally determined interdiffusion coefficients in quaternary and quinary high-entropy alloys

Published online by Cambridge University Press:  09 January 2020

Vivek Verma
Affiliation:
Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
Aparna Tripathi
Affiliation:
Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
Thiruvenkatam Venkateswaran
Affiliation:
Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Trivandrum, Kerala 695022, India
Kaustubh N. Kulkarni*
Affiliation:
Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

For the first time in the literature, experimental determination of entire sets of exact interdiffusion coefficients in quaternary and quinary alloy systems is reported. Using the method of body-diagonal diffusion couple, a set of nine quaternary interdiffusion coefficients were evaluated in Fe–Ni–Co–Cr and a set of sixteen quinary interdiffusion coefficients were determined in a Fe–Ni–Co–Cr–Mn system, both at approximately equimolar compositions. Regions of uphill interdiffusion and zero flux planes were observed for nickel and cobalt in quinary couples, indicating the existence of strong diffusional interactions in Fe–Ni–Co–Cr–Mn alloys. The strong diffusional interactions were also manifested in the large magnitudes of cross coefficients in both the systems. The existence of strong diffusional interactions in high-entropy alloys (HEAs) as observed through experimentally determined interdiffusion coefficients in this study establishes beyond doubt the fact that cross interdiffusion coefficients cannot be ignored in HEAs.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Miracle, D.B., Miller, J.D., Senkov, O.N., Woodward, C., Uchic, M.D., and Tiley, J.: Exploration and development of high entropy alloys for structural applications. Entropy 16, 494 (2014).CrossRefGoogle Scholar
Tsai, M.H. and Yeh, J.W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).CrossRefGoogle Scholar
Kumar, A. and Gupta, M.: An insight into evolution of light weight high entropy alloys: A review. Metals 6, 199 (2016).CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
Divinski, S.V., Pokoev, A.V., Esakkiraja, N., and Paul, A.: A mystery of “sluggish diffusion” in high-entropy alloys: The truth or a myth? Mater. Res. Lett. 17, 69 (2018).Google Scholar
Tong, C.J., Chen, Y.L., Chen, S.K., Yeh, J.W., Shun, T.T., Tsau, C.H., Lin, S.J., and Chang, S.Y.: Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881 (2005).CrossRefGoogle Scholar
Tsai, K.Y., Tsai, M.H., and Yeh, J.W.: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887 (2013).CrossRefGoogle Scholar
Dabrowa, J., Kucza, W., Cieslak, G., Kulik, T., Danielewski, M., and Yeh, J-W.: Interdiffusion in the FCC-structured Al–Co–Cr–Fe–Ni high entropy alloys: Experimental studies and numerical simulations. J. Alloys Compd. 674, 455 (2016).CrossRefGoogle Scholar
Beke, D.L. and Erdelyi, G.: On the diffusion in high-entropy alloys. Mater. Lett. 164, 111 (2016).CrossRefGoogle Scholar
Zhang, C., Zhang, F., Jin, K., Bei, H., Chen, S., Cao, W., Zhu, J., and Lv, D.: Understanding of the elemental diffusion behaviour in concentrated solid solution alloys. J. Phase Equilibria Diffusion 38, 434 (2017).CrossRefGoogle Scholar
Vaidya, M., Muralikrishna, G.M., Divinksi, S.V., and Murty, B.S.: Experimental assessment of the thermodynamic factor for diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Scr. Mater. 157, 81 (2018).CrossRefGoogle Scholar
Li, Q., Chen, W., Zhong, J., Zhang, L., Chen, Q., and Liu, Z-K.: On sluggish diffusion in FCC Al–Co–Cr–Fe–Ni high entropy alloys: An experimental and numerical study. Metals 8, 16 (2018).CrossRefGoogle Scholar
Chen, S., Li, Q., Zhong, J., Xing, F., and Zhang, L.: On diffusion behaviors in face centered cubic phase of Al–Co–Cr–Fe–Ni–Ti high entropy superalloys. J. Alloys Compd. 791, 255 (2019).CrossRefGoogle Scholar
Dabrowa, J., Zajusz, M., Kucza, W., Cieslak, G., Berent, K., Czeppe, T., Kulik, T., and Danielewski, M.: Demystifying the sluggish diffusion effect in high entropy alloys. J. Alloys Compd. 783, 193 (2019).CrossRefGoogle Scholar
Chen, W. and Zhang, L.: High-throughput determination of interdiffusion coefficients for Co–Cr–Fe–Mn–Ni high entropy alloys. J. Phase Equilibria Diffusion 38, 457 (2017).CrossRefGoogle Scholar
Wang, R., Chen, W., Zhong, J., and Zhang, L.: Experimental and numerical studies on the sluggish diffusion in face centred cubic Co–Cr–Cu–Fe–Ni high entropy alloys. J. Mater. Sci. Technol. 34, 1791 (2018).CrossRefGoogle Scholar
Vaidya, M., Trubel, S., Murty, B.S., Wilde, G., and Divinski, S.V.: Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Compd. 688, 994 (2016).CrossRefGoogle Scholar
Vaidya, M., Pradeep, K.G., Murty, B.S., Wilde, G., and Divinski, S.V.: Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 146, 211 (2018).CrossRefGoogle Scholar
Gaertner, D., Kottke, J., Wilde, G., Divinski, S.V., and Chumlyaskov, Y.: Tracer diffusion in single crystalline COCrFeNi and CoCrFeMnNi high entropy alloys. J. Mater. Res. 33, 3183 (2018).CrossRefGoogle Scholar
Gaertner, D., Abrahams, K., Kottke, J., Esin, V.A., Steinbach, I., Wilde, G., and Divinski, S.V.: Concentration-dependent atomic mobilities in FCC CoCrFeMnNi high entropy alloys. Acta Mater. 166, 357 (2019).CrossRefGoogle Scholar
Verma, V., Tripathi, A., and Kulkarni, K.N.: On interdiffusion in FeNiCoCrMn high entropy alloy. J. Phase Equilibria Diffusion 38, 445 (2017).CrossRefGoogle Scholar
Manning, J.R.: Cross terms in the thermodynamic diffusion equations for multicomponent alloys. Metall. Trans. B 1, 499 (1970).CrossRefGoogle Scholar
Kulkarni, K. and Chauhan, G.P.S.: Investigations of quaternary interdiffusion in a constituent system of high entropy alloys. AIP Adv. 5, 097162 (2015).CrossRefGoogle Scholar
Dayananda, M.A. and Sohn, Y.H.: A new analysis for the determination of ternary interdiffusion coefficients from a single diffusion couple. Metall. Mater. Trans. A 30, 535 (1999).CrossRefGoogle Scholar
Paul, A.: A pseudobinary approach to study interdiffusion and the Kirkendall effect in multicomponent systems. Philos. Mag. 93, 2297 (2013).CrossRefGoogle Scholar
Esakkiraja, N. and Paul, A.: A novel concept of pseudo ternary diffusion couple for the estimation of diffusion coefficients in multicomponent systems. Scr. Mater. 147, 79 (2018).CrossRefGoogle Scholar
Morral, J.E.: Body-diagonal diffusion couples for high entropy alloys. J. Phase Equilibria Diffusion 39, 51 (2018).CrossRefGoogle Scholar
Onsager, L.: Theories and problems of liquid diffusion. Ann. N. Y. Acad. Sci. 46, 241 (1945).CrossRefGoogle ScholarPubMed
Kirkaldy, J.S.: Diffusion in multicomponent metallic systems. Can. J. Phys. 35, 435 (1957).CrossRefGoogle Scholar
Day, K.M., Ram-Mohan, L.R., and Dayananda, M.A.: Determination and assessment of ternary interdiffusion coefficients from individual diffusion couples. J. Phase Equilib. Diffus. 26, 579 (2005).CrossRefGoogle Scholar
Dayananda, M.A. and Kim, C.W.: Zero-flux planes and flux reversals in Cu–Ni–Z diffusion couples. Metall. Trans. A 10, 1333 (1979).CrossRefGoogle Scholar
Andersson, J.O. and Agren, J.: Models for numerical treatment of multicomponent diffusion in simple phases. J. Appl. Phys. 72, 1350 (1992).CrossRefGoogle Scholar