Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-30T20:02:34.246Z Has data issue: false hasContentIssue false

Fine-tuning of the interface in high-quality epitaxial silicon films deposited by plasma-enhanced chemical vapor deposition at 200 °C

Published online by Cambridge University Press:  24 April 2013

Mario Moreno*
Affiliation:
National Institute for Astrophysics, Optics and Electronics, Electronics Department, INAOE, 72840 Puebla, Mexico
Gilles Patriarche
Affiliation:
Laboratoire de Photonique et de NanostructuresLPN-CNRS, Route de Nozay, 91460 Marcoussis, France
Pere Roca i Cabarrocas*
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, Ecole Polytechnique, CNRS, LPICM, 91128 Palaiseau, France
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

High-quality epitaxial silicon thin films have been deposited by plasma-enhanced chemical vapor deposition (PECVD) at 200 °C in a standard radiofrequency (RF) PECVD reactor. We optimized a silicon tetrafluoride (SiF4) plasma to clean the surface of <100> crystalline silicon wafers and without breaking vacuum, an epitaxial silicon film was grown from SiF4, hydrogen (H2), and argon (Ar) gas mixtures. We demonstrate that the H2/SiF4 flow rate ratio is a key parameter to grow high-quality epitaxial silicon films. Moreover, by changing this ratio, we can fine-tune the composition of the interface between the crystalline silicon (c-Si) wafer and the epitaxial film. In this way, at low values of the H2/SiF4 flow rate ratio, an abrupt interface is achieved. On the contrary, by increasing this ratio we can obtain a porous and fragile interface layer, composed of hydrogen-rich microcavities, which allows the transfer of the epitaxial film to foreign substrates.

Type
Reviews
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Campbell, S.A., Leighton, J.D., Case, G.H., and Knutson, K.L.: Very thin silicon epitaxial layers grown using rapid thermal vapor phase epitaxy. J. Vac. Sci. Technol., B 7(5), 1080 (1989).CrossRefGoogle Scholar
Civale, Y., Nanver, L.K., and Schellevis, H.: Selective solid-phase silicon epitaxy of p+ aluminum-doped contacts for nanoscale devices. IEEE Trans. Nanotechnol. 6(2), 196 (2007).CrossRefGoogle Scholar
Khan, H.R. and Frey, H.: Ion-beam deposition of nanocrystalline and epitaxial silicon films using silane plasma. Surf. Coat. Technol. 116, 472 (1999).CrossRefGoogle Scholar
DeBoer, S.J., Dalal, V.L., Chumanov, G., and Bartels, R.: Low temperature epitaxial silicon film growth using high vacuum electron-cyclotron-resonance plasma deposition. Appl. Phys. Lett. 66(19), 2528 (1995).CrossRefGoogle Scholar
Meyerson, B.S., Ganin, E., Smith, D.A., and Nguyen, T.N.: Low temperature silicon epitaxy by hot wall ultrahigh vacuum/low pressure chemical vapor deposition techniques: Surface optimization. J. Electrochem. Soc. 133, 1232 (1986).CrossRefGoogle Scholar
Meyerson, B.S.: Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition. Appl. Phys. Lett. 48, 797 (1986).CrossRefGoogle Scholar
Zhang, W., Lloyd, N.S., Osman, K., Bonar, J.M., Hamel, J.S., and Bagnall, D.M.: Selective epitaxial growth using dichlorosilane and silane by low pressure chemical vapor deposition. Microelectron. Eng. 73, 514 (2004).CrossRefGoogle Scholar
Sasaki, K., Tomoda, H., and Takada, T.: Etching action by atomic hydrogen and low temperature silicon epitaxial growth on ECR plasma CVD. Vacuum 51(4), 537 (1998).CrossRefGoogle Scholar
Kambara, M., Yagi, H., Sawayanagi, M., and Yoshida, T.: High rate epitaxy of silicon thick films by medium pressure plasma chemical vapor deposition. J. Appl. Phys. 99, 074901 (2006).CrossRefGoogle Scholar
Shimokawa, R., Yamanaka, M., and Sakata, I.: Very low temperature epitaxial growth of silicon films for solar cells. Jpn. J. Appl. Phys. 46(12), 7612 (2007).CrossRefGoogle Scholar
Kitagawa, T., Kondo, M., and Matsuda, A.: Hydrogen-mediated low-temperature epitaxy of Si in plasma-enhanced chemical vapor deposition. Appl. Surf. Sci. 159, 30 (2000).CrossRefGoogle Scholar
Moreno, M., Boubekri, R., and Roca i Cabarrocas, P.: Study of the effect of different fraction of large grains of μc-Si:H: F films on the infrared absorption on thin film solar cells. Sol. Energy Mater. Sol. Cells 100, 16 (2011).CrossRefGoogle Scholar
Abramov, A., Djeridane, Y., Vanderhaghen, R., and Roca i Cabarrocas, P.: Large grain μc-Si:H films deposited at low temperature: Growth process and electronic properties. J. Non-Cryst. Solids 352(9–20), 964 (2006).CrossRefGoogle Scholar
Djeridane, Y., Abramov, A., and Roca i Cabarrocas, P.: Silane versus silicon tetrafluoride in the growth of microcrystalline silicon films by standard radio frequency glow discharge. Thin Solid Films 515, 7451 (2007).CrossRefGoogle Scholar
Abramov, A., Daineka, D., Djeridane, Y., and Roca i Cabarrocas, P.: Detailed study of surface and interface properties of μc-Si films. J. Non-Cryst. Solids 354, 2218 (2008).CrossRefGoogle Scholar
Moreno, M., Labrune, M., and Roca i Cabarrocas, P.: Dry fabrication process for heterojunction solar cells through in-situ plasma cleaning and passivation. Sol. Energy Mater. Sol. Cells 94(3), 402 (2010).CrossRefGoogle Scholar
Bruel, M.: Separation of silicon wafers by the smart-cut method. Mater. Res. Innovations 3, 9 (1999).CrossRefGoogle Scholar
Bruel, M.: Silicon on insulator material technology. Electron. Lett. 31(14), 1201 (1995).CrossRefGoogle Scholar
Moriceau, H., Fournel, F., Aspar, B., Bataillou, B., Beaumont, A., Morales, C., Cartier, A.M., Pocas, S., Lagahe, C., Jalaguier, E., Soubie, A., Biasse, B., Sousbie, N., Sartori, S., Michaud, J.F., Letertre, F., Rayssac, O., Cayrefourcq, I., Richtarch, C., Daval, N., Aulentte, C., Akatsu, T., Osternaud, B., Ghyselen, B., and Mazuré, C.: New layer transfers obtained by the SmartCut process. J. Electron. Mater. 32(8), 829 (2003).CrossRefGoogle Scholar
Roca i Cabarrocas, P., Hamma, S., Hadjadj, A., Bertomeu, J., and Andreu, J.: New features of the layer by layer deposition of microcrystalline silicon films revealed by spectroscopic ellipsometry and high resolution transmission electron microscopy. Appl. Phys. Lett. 69, 529 (1996).CrossRefGoogle Scholar
Irene, E.A.: Applications of spectroscopic ellipsometry to microelectronics. Thin Solid Films 233, 96 (1993).CrossRefGoogle Scholar
Giannuzzi, L.A., Drown, J.L., Brown, S.R., Irwin, R.B., and Stevie, F.A.: Applications of the FIB lift-out technique for TEM specimen preparation. Microsc. Res. Tech. 41(4), 285 (1998).3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Hamma, S. and Roca i Cabarrocas, P.: Low temperature growth of highly crystallized silicon thin film using hydrogen and argon dilution. J. Non-Cryst. Solids 227, 852 (1998).CrossRefGoogle Scholar
Jellison, G.E. Jr., Chisholm, M., and Gorbatkin, S.M.: Optical functions of chemical vapor deposited thin-film silicon determined by spectroscopic ellipsometry. Appl. Phys. Lett. 62, 3348 (1993).CrossRefGoogle Scholar
Langford, A.A., Fleet, M.L., and Nelson, B.P.: Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon. Phys. Rev. B: Condens. Matter 45(23), 13367 (1992).CrossRefGoogle ScholarPubMed
Langford, A.A., Mahan, A.H., Fleet, M.L., and Bender, J.: Effect of fluorine on the structural and electronic properties of a-Si:H:F. Phys. Rev. B: Condens. Matter 41(12), 8359 (1990).CrossRefGoogle ScholarPubMed