Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T04:09:38.820Z Has data issue: false hasContentIssue false

Film/substrate interactions and superconducting properties of Tl(Ba1−xSrx)2Ca2Cu3Oy thin films on (001) SrTiO3 and SrTiO3-buffered (001) MgO substrates

Published online by Cambridge University Press:  31 January 2011

A. P. Bramley
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
C. R. M. Grovenor
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
M. J. Goringe
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
J. D. O'Connor
Affiliation:
Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, United Kingdom
A. P. Jenkins
Affiliation:
Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, United Kingdom
D. Dew-Hughes
Affiliation:
Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, United Kingdom
N. Reschauer
Affiliation:
Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, 93040 Regensburg, Germany
H. H. Wagner
Affiliation:
Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, 93040 Regensburg, Germany
W. Brozio
Affiliation:
Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, 93040 Regensburg, Germany
U. Spreitzer
Affiliation:
Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, 93040 Regensburg, Germany
K. F. Renk
Affiliation:
Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, 93040 Regensburg, Germany
Get access

Abstract

We have developed a process for the fabrication of (001) oriented SrTiO3 buffer layers onto (001) MgO substrates by rf magnetron sputtering followed by a post-deposition heat treatment in air. Precursor films with Tl :Ba : Ca : Cu ratio 2 : 2 : 2 : 3 were deposited by dc magnetron sputtering onto both these buffered substrates and directly onto (001) SrTiO3 single-crystal substrates, and thalliated at elevated temperatures. Because of Sr diffusion from the substrate/buffer layer, and its subsequent substitution for Ba in the superconducting film, the single Tl–O layer phase Tl(Ba1−xSrx)2Ca2Cu3Oy was stabilized. Diffusion of Ba and Ca in the opposite direction led to the formation of a Ba–Ca–Ti–O compound at the interface. The Tl(Ba1xSrx)2Ca2Cu3Oy films typically have superconducting transition temperatures (Tc's) > 103 K and critical current densities (Jc's) > 2.9 × 105 A cm−2 at 77 K. Rs values measured on these films and scaled to 10 GHz were 3.0 mΩ at 80 K and <200 µΩ at 50 K for the film grown on SrTiO3 buffered MgO, and 2.0 mΩ and 1.0 mΩ at 50 K for the film grown directly onto the (001) SrTiO3 substrate. Films fabricated on (001) SrTiO3 using an in situ deposition technique with a substrate temperature around 100 °C lower than the ex situ thalliation temperature showed no evidence of an interfacial reaction layer.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sheng, Z. Z. and Hermann, A. M., Nature (London) 332, 55 (1988).CrossRefGoogle Scholar
2.Holstein, W. L., Parisi, L. A., Wilker, C., and Flippen, R. B., Appl. Phys. Lett. 60 (16), 2014 (1992).CrossRefGoogle Scholar
3.Huber, S., Manzel, M., Bruchlos, H., Hensen, S., and Müller, G., Physica C 244, 337 (1995).CrossRefGoogle Scholar
4.Hollmann, E. K., Vedlik, D. G., Zaitsev, A. G., and Melekh, B., Supercond. Sci. Technol. 6, 1 (1994).Google Scholar
5.Werder, D. J. and Liou, S. H., Physica C 179, 430 (1991).CrossRefGoogle Scholar
6.Torardi, C. C., Subramanian, M. A., Calabrese, J. C., Gopalakrishnan, J., Morrissey, J. K., Askew, T. R., Flippen, R. B., Chowdhry, U., and Sleight, A. W., Science 240, 631 (1988).CrossRefGoogle Scholar
7.Simon, R. W., Platt, C. E., Lee, A. E., Lee, G. S., Daly, K. P., Wire, M. S., Luine, J. A., and Urbanik, M., Appl. Phys. Lett. 53 (26), 2677 (1988).CrossRefGoogle Scholar
8.Gieres, G., Schmidt, H., Hradil, K., Hosler, W., and Seebock, R., Physica C 185–189, 2115 (1991).CrossRefGoogle Scholar
9.Soblewski, R., Gierlowski, P., Kula, W., Zarembinski, S., Lewandowski, S. J., Berkowski, M., and Pajaczkowska, A., IEEE Trans. Mag. 27 (2), 876 (1991), and references therein.CrossRefGoogle Scholar
10.Kobayashi, Y., Sato, J., and Yajima, K., Trans. IEICE E 72, 290 (1989).Google Scholar
11.Holstein, W. L., Parisi, L. A., Flippen, R. B., and Swartzfager, D. G., J. Mater. Res. 8, 962 (1993).CrossRefGoogle Scholar
12.Tang, Y. Q., Sheng, Z. Z., Luo, W. A., Chan, I. N., Chen, Z. Y., Li, Y. F., and Pederson, D. O., Physica C 214, 190 (1993).CrossRefGoogle Scholar
13.Suhara, H., Nabatame, T., Hyun, O-B., Koike, S., and Hirabayashi, I., Supercond. Sci. Technol. 8, 443 (1995).CrossRefGoogle Scholar
14.Konaka, T., Sato, M., Asano, H., and Kubo, S., J. Superconductivity 4 (4), 283 (1991).CrossRefGoogle Scholar
15.Braginsky, V. B., Ilchenko, V. S., and Bagdassarov, Kh. S., Phys. Lett. A 12, 300 (1987).CrossRefGoogle Scholar
16.Collins, B. T., Ladd, J. A., and Matey, J. R., J. Appl. Phys. 70 (4), 2458 (1991).CrossRefGoogle Scholar
17.Ceremuga, J., Barton, M., and Miranda, F., Supercond. Sci. Technol. 7, 855 (1994).CrossRefGoogle Scholar
18.Wu, X. D., Dye, R.C., Muenchausen, R. E., Foltyn, S. R., Maley, M., Rollett, A. D., Garcia, A. R., and Nogar, N. S., Appl. Phys. Lett. 58 (19), 2165 (1991).CrossRefGoogle Scholar
19.Wang, F. and Wördenweber, R., Thin Solid Films 227, 200 (1993).CrossRefGoogle Scholar
20.Cheung, J. T., Gergis, I., James, M., and DeWames, R. E., Appl. Phys. Lett. 60 (25), 3180 (1992).CrossRefGoogle Scholar
21.Cheng, H. F., Lin, C. H., Lin, H. Y., Lo, J. T., Tseng, T. F., Lu, K. S., and Lin, I. N., Physica C 230, 267 (1994).CrossRefGoogle Scholar
22.Wu, X. D., Muenhausen, R. E., Nogar, N. S., Piqué, A., Edwards, R., Wilkens, B., Ravi, T. S., Hwang, D. M., and Chen, C. Y., Appl. Phys. Lett. 58 (3), 304 (1991).CrossRefGoogle Scholar
23.Holstein, W. L., Parisi, L. A., Face, D. W., Wu, X. D., Foltyn, S. R., and Muenchausen, R. E., Appl. Phys. Lett. 61 (8), 982 (1992).CrossRefGoogle Scholar
24.Bramley, A. P., Morley, S. M., Grovenor, C. R. M., and Pecz, B., Appl. Phys. Lett. 66 (4), 517 (1995).CrossRefGoogle Scholar
25.O'Connor, J. D., Dew-Hughes, D., Bramley, A. P., Grovenor, C. R. M., Goringe, M. J., and Morley, S. M., Appl. Phys. Lett. 69 (1), 115 (1996).CrossRefGoogle Scholar
26.Tang, Y. Q., Chen, K. Y., Alfonso, S., Xu, X. L., Xiong, Q., Salamo, G., Chen, F. T., Guo, R., and Bhalla, A., J. Appl. Phys. 78 (11), 6846 (1995).CrossRefGoogle Scholar
27.Bramley, A. P., Glassey, B. J., Grovenor, C. R. M., Goringe, M. J., O'Connor, J. D., Jenkins, A. P., Kale, K. S., Jim, K. L., Dew-Hughes, D., and Edwards, D. J., IEEE Trans. Appl. Supercond. 7 (2), 1249 (1997).CrossRefGoogle Scholar
28.Kale, K. S., Jenkins, A. P., Jim, K. L., O'Connor, J. D., Dew-Hughes, D., Edwards, D. J., Bramley, A. P., Glassey, B. J., Grovenor, C. R. M., Goringe, M. J., and Pecz, B., in High Temperature Superconductors: Synthesis, Processing and Large-Scale Applications, edited by Balachandran, U., McGinn, P. J., and Abell, J. S. (The Minerals, Metals and Materials Society, Warrendale, PA, 1996), p. 345.Google Scholar
29.Reschauer, N., Spreitzer, U., Brozio, W., Piehler, A., Renk, K. F., Berger, R., and Saemann-Ischenko, G., Inst. Phys. Conf. Ser. 148 (2), 793 (1995).Google Scholar
30.Reschauer, N., Spreitzer, U., Brozio, W., Piehler, A., Renk, K. F., Berger, R., and Saemann-Ischenko, G., in High Temperature Superconductors: Synthesis, Processing and Large-Scale Applications, edited by Balachandran, U., McGinn, P. J., and Abell, J. S. (The Minerals, Metals and Materials Society, Warrendale, PA, 1996), p. 339.Google Scholar
31.Reschauer, N., Spreitzer, U., Brozio, W., Piehler, A., Renk, K. F., Berger, R., and Saemann-Ischenko, G., Appl. Phys. Lett. 68 (7), 1000 (1996).CrossRefGoogle Scholar
32.Michikami, O. and Asahi, M., Jpn. J. Appl. Phys. 30 (3), 466 (1991).CrossRefGoogle Scholar
33.Martin, C., Huvé, M., Hervieu, M., Maignan, A., Michel, C., and Raveau, B., Physica C 201, 362 (1992).CrossRefGoogle Scholar
34.Martens, J. S., Hietala, V. M., Venturini, E. L., and Lee, W. Y., J. Appl. Phys. 73 (11), 7571 (1993).CrossRefGoogle Scholar
35.Carini, J. P., Awasthi, A. M., Beyermann, W., Grüner, G., Hylton, T., Char, K., Beasley, M. R., and Kapitulnik, A., Phys. Rev. B 37 (16), 9726 (1988).CrossRefGoogle Scholar
36.Drabeck, L., Holczer, K., Grüner, G., Chang, J-J., Scalapino, D. J., Inam, A., Wu, X. D., Nazar, L., and Venkatesan, T., Phys. Rev. B 42 (16), 10 020 (1990).CrossRefGoogle Scholar
37.Klein, N., Müller, G., Piel, H., Roas, B., Schultz, L., Klein, U., and Peiniger, M., Appl. Phys. Lett. 54 (8), 757 (1989).CrossRefGoogle Scholar
38.Lee, W. Y., Salem, J., Lee, V., Deline, V., Huang, T. C., Savoy, R., Duran, J., and Sandstrom, R. L., Physica C 160, 511 (1989).CrossRefGoogle Scholar
39.Hwang, D. M., Ying, Q. Y., and Kwok, H. S., Appl. Phys. Lett. 58 (21), 2429 (1991).CrossRefGoogle Scholar