Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T02:46:11.570Z Has data issue: false hasContentIssue false

Filling of Chrysotile Nanotubes with Metals

Published online by Cambridge University Press:  31 January 2011

C. Métraux
Affiliation:
University of Fribourg, Institute of Mineralogy and Petrography, 1700 Fribourg, Switzerland
B. Grobéty
Affiliation:
University of Fribourg, Institute of Mineralogy and Petrography, 1700 Fribourg, Switzerland
P. Ulmer
Affiliation:
Eidgenössishe Technische Hochschule Zürich, Institute of Mineralogy and Petrography, 8052 Zürich, Switzerland
Get access

Extract

Nanowires were produced by injection of molten Hg and Pb into chrysotile nanotubes. The breakdown of chrysotile and the surface tension of the molten metals are the limiting factors for the filling procedure. The thermal stability of chrysotile nanotubes was investigated by infrared spectrometry, thermogravimetry, differential thermal analysis, and x-ray diffraction analyses. For short-term thermal annealing (30 min) the tube morphology remains stable up to 700 °C. The high surface tension of both molten Pb and Hg (γLV > 200 mN/m) requires external pressure for the melts to penetrate into the tubes. Filling of the tubes was achieved under high pressure and high temperature conditions compatible with the stability range for chrysotile determined in the annealing experiments. Transmission electron microscopy observations confirmed high filling yields for both metals. Almost all nanotubes were partially filled with lead. The length of continuous wires ranged from tens to hundreds of nanometers. Additional experiments with tin were not successful.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chopra, N.G., Luyken, H., Crespi, V.H., Cherrey, K., Zettl, A., and Cohen, M.L., Science 269, 966 (1995).CrossRefGoogle Scholar
2.Nath, M., Govindaraj, A., and Rao, C.N.R., Adv. Mater. 13, 283 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
3.Whittaker, E.J.W., Acta Cryst. 9, 855 (1956).CrossRefGoogle Scholar
4.Yada, K., Acta Cryst. 27, 659 (1971).CrossRefGoogle Scholar
5.Yada, K., Acta Cryst. 23, 704 (1967).CrossRefGoogle Scholar
6.Harris, P.J.F., Carbon Nanotubes and Related Structures, New Materials for the Twenty-first Century (Cambridge University Press, Cambridge, United Kingdom, 1999).CrossRefGoogle Scholar
7.Zhang, Z.L., Li, B., Shi, Z.J., Gu, Z.N., Xue, Z.Q., and Peng, L.M., J. Mater. Res. 15, 2658 (2000).CrossRefGoogle Scholar
8.Ajayan, P.M. and Iijima, S., Nature 361, 333 (1993).CrossRefGoogle Scholar
9.Dujardin, E., Ebbesen, T.W., Hiura, H., and Tanigaki, K., Science 265, 1850 (1994).CrossRefGoogle Scholar
10.Tsang, S.C., Chen, Y.K., Harris, P.J.F., and Green, M.L.H., Nature 372, 159 (1994).CrossRefGoogle Scholar
11.Sloan, J., Wright, D.M., Woo, H.G., Bailey, S., Brown, G., York, A.P.E., Coleman, K.S., Hutchison, J.L., and Green, M.L.H., Chem. Soc., Chem. Commun. 699–700, 699 (1999).CrossRefGoogle Scholar
12.Terrones, M., Grobert, N., Hsu, W.K., Zhu, Y.Q., Hu, W.B., Terrones, H., Hare, J.P., Kraut, H.W., and Walton, D.R.M., Mater. Res. Bull. 24, 43 (1999).CrossRefGoogle Scholar
13.Bogomolov, V.N. and Kumzerov, Y.A., JETP Lett. 21, 198 (1975).Google Scholar
14.Ivanova, M.S., Kumzerov, Y.A., Poborchii, V.V., Ulashkevich, Y.V., and Zhuravlev, V.V., Microporous Mater. 4, 319 (1995).CrossRefGoogle Scholar
15.Romanov, S.G. and Sotomayer, C.M. Torres, in Nanoscale Science and Technology, edited by Garcia, N. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998), pp. 255270.Google Scholar
16.Poborchii, V.V., Ivanova, M.S., and Salmantina, I.A., Superlattices Microstruct. 16, 133 (1994).CrossRefGoogle Scholar
17.Romanov, S.G., Torres, C.M. Sotomayer, Yates, H.M., Pemble, M.E., Butko, V., and Tretijakov, V., J. Appl. Phys. 82, 380 (1997).CrossRefGoogle Scholar
18.Zhukov, E.A., Yates, H.M., Pemble, M.E., Torres, C.M. Sotomayor, and Romanov, S.G., Superlattices Microstruct. 27, 571 (2000).CrossRefGoogle Scholar
19.Brindley, G.W. and Zussman, J., Amer. Min. 42, 461 (1957).Google Scholar
20.Ball, M.C. and Taylor, H.F.W., Min. Mag. 33, 467 (1963).Google Scholar
21.Brindley, G.W. and Hayami, R., Clays & Clay Minerals 34, 35 (1964).Google Scholar
22.Brindley, G.W. and Hayami, R., Min. Mag. 35, 189 (1965).Google Scholar
23.Santos, H. De Souza and Yada, K., Clays Clay Min. 27, 161 (1979).CrossRefGoogle Scholar
24.Howe, J.M., Interfaces in Materials (Wiley, New York, 1997).Google Scholar
25.Vavruch, I., J. Colloid Interface Sci. 169, 249 (1995).CrossRefGoogle Scholar
26.Hills, G.J. and Høiland, H.J., J. Colloid Interface Sci. 99, 463 (1984).CrossRefGoogle Scholar
27.Wang, Z., Lazor, P., and Saxena, S.K., Phys. B: Condens. Matter 293, 408 (2001).CrossRefGoogle Scholar
28.Grönbeck, H., Tomanek, D., Kim, S.G., and Rosen, A., Z. Phys. D40, 469 (1997).Google Scholar