Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T07:37:22.294Z Has data issue: false hasContentIssue false

Fiber-reinforced magneto-polymer matrix composites (FR–MPMCs)—A review

Published online by Cambridge University Press:  14 March 2017

Muhammad Musaddique Ali Rafique*
Affiliation:
School of Engineering [Aerospace, Mechanical and Manufacturing], College of Science, Engineering and Health, RMIT University, Bundoora, VIC 3083, Australia
Everson Kandare
Affiliation:
School of Engineering [Aerospace, Mechanical and Manufacturing], College of Science, Engineering and Health, RMIT University, Bundoora, VIC 3083, Australia
Stephan Sprenger
Affiliation:
Business Line Interface and Performance, Evonik Nutrition & Care GmbH, Geesthacht 21502, Germany
*
a)Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

Magneto polymer matrix composites (MPMC) is a new class of magnetic polymer materials which are being developed and under investigation as potential materials for tomorrow’s aircraft structures. It encompasses magnetic, particulate strengthening (dispersion strengthening) as well as fiber reinforcement/strengthening characteristics which are sought out to be utilized toward making efficient future aerospace composite materials. Various types of ferrites including barium, cobalt, iron, and strontium were explored for being used in making new composites. Here a comprehensive review of the synthesis, structure, properties, thermodynamics, surface chemistry, and phase transformations of individual ferrites and clusters of ferrites as fillers is presented. In particular a discussion about the rational control of the mechanical, physical, thermal, electrical, and magnetic properties of magneto polymer matrix composites through surface functionalization, modification, emulsification/compounding/blending, heat treatment (phase transformation and separation), and control of processing conditions (temperature, pressure and geometry of mold) is provided. These smart materials have a wide range of potential applications in medicine, drug delivery, bio imaging, bio marking, tissue engineering, electromagnetic interference (EMI) and electromagnetic force (EMF) shielding, and as competent materials for aerospace structural applications.

Type
Review
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Michael E. McHenry

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Halliday, D., Resnick, R., and Krane, K.: Fundamentals of Physics, 9th ed. (John Wiley and Sons, New York, 2011).Google Scholar
Buschow, K.H.J. and de Boer, F.R.: Physics of Magnetism and Magnetic Materials (Kluwer Academic/Plenum Publishers, New York, 2004).Google Scholar
Goldman, A.: Modern Ferrite Technology, 2nd ed. (Springer Science + Business Media, Inc., Pittsburgh, 2006).Google Scholar
Smit, J. and Wijn, H.P.J.: Ferrites. In Philips Technical Library (N. V. Philips, Gloeilampenfabrieken, Eindhoven, 1959).Google Scholar
Riches, E.E.: Ferrites (Mills and Boon Limited, London, 1972).Google Scholar
Say, M.G.: Magnetic Alloys and Ferrites (George Newns Limited, London, 1954).Google Scholar
Pullar, R.C.: Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 11911334 (2012).CrossRefGoogle Scholar
Martins, P., Kolen’ko, Y.V., Rivas, J., and Lanceros-Mendez, S.: Tailored magnetic and magnetoelectric responses of polymer-based composites. ACS Appl. Mater. Interfaces 7, 1501715022 (2015).CrossRefGoogle ScholarPubMed
Sozeri, H., Kurtan, U., Topkaya, R., Baykal, A., and Toprak, M.S.: Polyaniline (PANI)–Co0.5Mn0.5Fe2O4 nanocomposite: Synthesis, characterization and magnetic properties evaluation. Ceram. Int. 39, 51375143 (2013).Google Scholar
Khursheed, T., Islam, M.U., Iqbal, M.A., Ali, I., Shakoor, A., Awan, M.S., Iftikhar, A., Khan, M.A., and Ashiq, M.N.: Synthesis and characterization of polyaniline–hexaferrite composites. J. Magn. Magn. Mater. 393, 814 (2015).Google Scholar
Puryanti, D., Ahmad, S.H., and Mustaffa, H.A.: Effect of nickel–cobalt–zinc ferrite filler on electrical and mechanical properties of thermoplastic natural rubber composites. Polym.-Plast. Technol. Eng. 45, 561567 (2006).Google Scholar
Praveena, K., Sadhana, K., and Ramana, S.M.: Structural and magnetic properties of NiCuZn ferrite/SiO2nanocomposites. J. Magn. Magn. Mater. 323, 21222128 (2011).Google Scholar
Raju, P., Ramesh, T., and Murthy, S.R.: Ferrite + polymer nanocomposites for EMI applications. Int. J. ChemTech Res. 7(3), 13431350 (2015).Google Scholar
Chen, S., Chen, S., Zhao, G., and Chen, J.: Fabrication and properties of novel superparamagnetic, well-dispersed waterborne polyurethane/Ni–Zn ferrite nanocomposites. Compos. Sci. Technol. 119, 108114 (2015).Google Scholar
Wang, C., Niu, Y., Pei, P., Shen, Y., Zhang, H., and Xie, A.: Synthesis, characterization and dielectric properties of polyaniline@Ni0.5Zn0.5Fe2O4 composite nanofibers. Mater. Sci. Semicond. Process. 40, 140144 (2015).Google Scholar
Xie, Y., Hong, X., Wang, X., Zhao, J., Gao, Y., Ling, Y., Yan, S., Shi, L., and Zhang, K.: Preparation and electromagnetic properties of La-doped barium–ferrite/polythiophene composites. Synth. Met. 162, 16431647 (2012).Google Scholar
Xie, Y., Hong, X., Gao, Y., Li, M., Liu, J., Wang, J., and Lu, J.: Synthesis and characterization of La/Nd-doped barium–ferrite/polypyrrole nanocomposites. Synth. Met. 162, 677681 (2012).CrossRefGoogle Scholar
Chen, L. and Xing-long, G.: Damping of magneto rheological elastomers. J. Cent. South Univ. 15(1), 271274 (2008).CrossRefGoogle Scholar
Kallio, M.: The Elastic and Damping Properties of Magnetorheological Elastomers, Vol. 565 (VTT Publications, Espoo, 2005); p. 146.Google Scholar
Fulco, A.P.P., Melo, J.D.D., Paskocimas, C.A., Medeiros, S.N., Machado, F.L.A., and Rodrigues, A.R.: Magnetic properties of polymer matrix composites with embedded ferrite particles. NDT&E Int. 77, 4248 (2016).Google Scholar
Andrei, G., Dima, D., Birsan, L.G., and Circiumaru, A.: Effect of ferrite particles on mechanical behaviour of glass fibre reinforced polymer composite. Mater. Plast. 46(3), 284287 (2009).Google Scholar
Dima, D. and Andrei, G.: Investigation of the effect of Fe3O4 particles on the interface of Gf–Pr–Fa magnetic composites. Materialwiss. Werkstofftech. 34, 349353 (2003).Google Scholar
Kessler, M.R., Sottos, N.R., and White, S.R.: Self-healing structural composite materials. Composites, Part A 34, 743753 (2003).CrossRefGoogle Scholar
Trask, R.S., Williams, H.R., and Bond, I.P.: Self-healing polymer composites: Mimicking nature to enhance performance. Bioinspiration & Biomimetics 2, 19 (2007).Google Scholar
Bond, I.P., Trask, R.S., Williams, H.R., and Williams, G.J.: Self-healing Fibre-reinforced Polymer Composites: An Overview, in Self-healing Polymers, van der Swaag, S., ed. (Springer Publishing, Houten, 2015).Google Scholar
Bychkova, A.V.: Magnetic and transport properties of magneto-anisotropic nanocomposites for controlled drug delivery. Nanotechnol. Russ. 10(3–4), 325335 (2015). [in Russian].CrossRefGoogle Scholar
Gundermann, T., Günther, S., Borin, D., and Odenbach, S.: A comparison between micro- and macro-structure of magnetoactive composites, 13th Int. Conf. on Electrorheological Fluids and Magnetorheological Suspensions (ERMR2012). J. Phys.: Conf. Ser. 412, 012027 (2013).Google Scholar
Bica, I., Anitas, E.M., and Averis, L.M.E.: Tensions and deformations in composites based on polyurethane elastomer and magnetorheological suspension: Effects of the magnetic field. J. Ind. Eng. Chem. 28, 8690 (2015).CrossRefGoogle Scholar
Boczkowska, A., Awietjan, S.F., Pietrzko, S., and Kurzydłowski, K.J.: Mechanical properties of magnetorheological elastomers under shear deformation. Composites, Part B 43, 636640 (2012).CrossRefGoogle Scholar
Boczkowska, A. and Awietjan, S.: Intelligent magnetorheological elastomer composites. Polimery 58(6), 443449 (2013).Google Scholar
Li, J., Gong, X., Zhu, H., and Jiang, W.: Influence of particle coating on dynamic mechanical behaviors of magnetorheological elastomers. Polym. Test. 28, 331337 (2009).Google Scholar
Qiao, X., Lu, X., Gong, X., Yang, T., Sun, K., and Chen, X.: Effect of carbonyl iron concentration and processing conditions on the structure and properties of the thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS). Polym. Test. 47, 5158 (2015).Google Scholar
Zhou, Y.: The influence of particle content on the equi-biaxial fatigue behaviour of magnetorheological elastomers. Mater. Des. 67, 398404 (2015).Google Scholar
Razzaq, M.Y., Behl, M., and Lendlein, A.: Magnetic memory effect of nanocomposites. Adv. Funct. Mater. 22, 184191 (2012).Google Scholar
Thévenot, J., Oliveira, H., Sandre, O., and Lecommandoux, S.: Magnetic responsive polymer composite materials. Chem. Soc. Rev. 42, 7099 (2013).Google Scholar
Grujić, A., Talijan, N., Stojanović, D., Stajić-Trošić, J., Burzić, Z., Balanović, L.j., and Aleksić, R.: Mechanical and magnetic properties of composite materials with polymer matrix. J. Min. Metall., Sect. B 46(1), 2532 (2010).Google Scholar
Andrei, G., Dima, D., Bîrsan, L.G., and Andrei, L.: Improving the properties of new magnetic composite with polyester resin matrix. In Proc. of ROTRIB'03, National Tribology Conference, Galati, The annals of the university “Dunarea de Jos” of Galati, Fascicle VIII: Tribology (2003); pp. 124128.Google Scholar
Dima, D. and Mitoseriu, O.: The use and behaviour of composite materials with particles when obtaining rolls for rolled sheet iron oiling plant. In Proc. of ROTRIB'03, National Tribology Conference, Galati, The annals of the university “Dunarea de Jos” of Galati, Fascicle VIII: Tribology (2003); pp. 115117.Google Scholar
Andrei, G., Dima, D., and Andrei, L.: Lightweight magnetic composite for aircraft applications. J. Optoelectron. Adv. Mater. 8(2), 726730 (2006).Google Scholar
Goiti, E., Hernandz, R., Sanz, R., Lepez, D., Vazquez, M., Mijangos, C., Turcu, R., Nan, A., Bica, D., and Vekas, L.: Novel nanostructured magneto polymer composite. Nanostruct. Polym. Nanocompos. 2, 512 (2006).Google Scholar
Adrian, C., Gabriel, A., Iulian, G.B., and Semenescu, A.: Electrical conductivity of fabric based filled epoxy composites. Mater. Plast. 46(2), 211214 (2009).Google Scholar
Dima, D.: Research on polymeric composite materials with particles using comparative tests. Acad. J. Manufact. Eng. 8(1), 4348 (2010).Google Scholar
Stabik, J., Dybowska, A., Pluszynski, J., Szczepanik, M., and Suchon, L.: Magnetic induction of polymer composites filled with ferrite powders. Arch. Mater. Sci. Eng. 41(1), 1320 (2010).Google Scholar
Stabik, J., Chrobak, A., Haneczok, G., and Dybowska, A.: Magnetic properties of polymer matrix composites filled with ferrite powders. Arch. Mater. Sci. Eng. 48(2), 97102 (2011).Google Scholar
Stabik, J., Dybowska, A., and Chomiak, M.: Polymer Composites filled with powders as polymer graded materials. J. Achiev. Mater. Manufact. Eng. 43(1), 153161 (2010).Google Scholar
Stabik, J., Dybowska, A., Szczepanik, M., and Suchon, L.: Viscosity measurement of epoxy resin filled with ferrite powders. Arch. Mater. Sci. Eng. 38(1), 3440 (2009).Google Scholar
Dobrzanski, L.A. and Drak, M.: Structure and properties of composite materials with polymer matrix reinforced Nd–Fe–B hard magnetic nanostructured particles. J. Mater. Process. Technol. 157–158, 650657 (2004).CrossRefGoogle Scholar
Dobrzanski, L.A. and Drak, M.: Properties of composite materials with polymer matrix reinforced with Nd–Fe–B hard magnetic particles. J. Mater. Process. Technol. 175, 149156 (2006).Google Scholar
Drak, M. and Dobrzanski, L.A.: Hard magnetic materials Nd–Fe–B/Fe with epoxy resin matrix. J. Achiev. Mater. Manufact. Eng. 21(2), 6366 (2007).Google Scholar
Ziebowicz, B., Szewieczek, D., and Dobrazanski, A.L.: Magnetic properties and structure of nanocomposites of powder Fe73.5Cu1Nb3Si13.5B9 alloy—Polymer type. J. Mater. Process. Technol. 157–158, 776780 (2004).Google Scholar
Szewieczek, D., Dobrzański, A.L., and Ziębowicz, B.: Structure and magnetic properties of nanocomposite of nanocrystalline powder—Polymer type. J. Mater. Process. Technol. 157–158, 765770 (2004).Google Scholar
Ziebowicz, B., Szewieczek, D., Dobrzanski, A.L., Wysłocki, J.J., and Przybył, A.: Structure and properties of composite materials consisting of the nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloy powders and polyethylene. J. Mater. Process. Technol. 162–163, 149155 (2005).Google Scholar
Dobrzański, L.A., Drak, M., and Ziębowicz, B.: New possibilities of composite materials applications – materials with specific magnetic properties. J. Mater. Process. Technol. 191, 352355 (2007).Google Scholar
Dobrzański, L.A., Tomiczek, A., Tomiczek, B., Ślawska-Waniewska, A., and Iesenchuk, O.: Polymer matrix composite materials reinforced by Tb0.3Dy0.7Fe1.9 magnetostrictive particles. J. Achiev. Mater. Manufact. Eng. 37(1), 1623 (2009).Google Scholar
Valko, L., Bucek, P., Dosoudil, R., and Usakova, M.: Magnetic properties of ferrite polymer composites. J. Electr. Eng. 54(3–4), 100103 (2003).Google Scholar
Rekošová, J., Dosoudil, R., Ušáková, M., Ušák, E., and Hudec, I.: Magneto polymer composites with soft magnetic ferrite fillers. IEEE Trans. Magn. 49(1), (2013).CrossRefGoogle Scholar
Rekosova, J.: The influence of soft magnetic fillers on the properties of magneto polymer composites, Contributed Lecture (CL) 18. Chem. Listy 107, s40s100 (2013).Google Scholar
Cuevas, J.M., Alonso, J., German, L., Iturrondobeitia, M., Laza, J.M., Vilas, J.L., and León, L.M.: Magneto-active shape memory composites by incorporating ferromagnetic microparticles in a thermo-responsive polyalkenamer. Smart Mater. Struct. 18, 075003 (2009).CrossRefGoogle Scholar
A. Kumar and B. Bhattacharya: Real time integrity monitoring of composite laminates with magnetostrictive sensory layer. In Proc. SPIE Vol. 7268, Smart Structures, Devices, and Systems IV, S.F. Al-Sarawi, V.K. Varadan, N. Weste and K. Kalantar-Zadeh, eds. (SPIE, Melbourne, 2008); p. 72680N.Google Scholar
Krishnamurthy, A.V., Anjanappa, M., Wang, Z., and Chen, X.: Sensing of delaminations in composite laminates using embedded magnetostrictive particle layers. J. Intell. Mater. Syst. Struct. 10, 825835 (1999).Google Scholar
Currie, G., Spayde, D., and Myers, O.: Two tiered analysis of CFRP laminate embedded with magnetostrictive particles. In Proc. of the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2010, Vol. 2 (ASME, Philadelphia, 2010); pp. 685691.Google Scholar
Oliver, J.M., Currie, G., and Rudd, J.: Tensile testing and non-destructive evaluation scanning of varied ply CFRP laminates with embedded magnetostrictive particles. Presented at the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (held in Boston, 8–1 April 2013).Google Scholar
Chen, X. and Anjanappa, M.: Health monitoring of composites embedded with magnetostrictive thick film without disassembly. Smart Mater. Struct. 15, 2032 (2006).Google Scholar
Rudd, J., Spayde, D., and Myers, O.: Experimental non-destructive testing using magnetostrictive particles embedded in carbon fibre reinforced polymer beams. In Proc. of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS2012 (ASME, Stone Mountain, 2012); pp. 707711.Google Scholar
Zhupanska, O.I. and Sierakowski, R.I.: Mechanical response of composites in the presence of an electromagnetic field. Presented at the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference (held in Austin, 1821 April 2005).Google Scholar
Carbas, R.J.C., Marques, E.A.S., Lopes, A.M., and da Silva, L.F.M.: Effect of Cure temperature on the glass transition temperature of an epoxy adhesive. J. Adhes. 90(1), 104119 (2013).Google Scholar
Khomenko, A., Koricho, E.G., and Haq, M.: Monitoring the effect of micro-/nanofillers on curing induced shrinkage in epoxy resins. In Fillers and Reinforcements for Advanced Nanocomposites (Elsevier, Amsterdam, 2015); ch. 18.Google Scholar
Koricho, E.G., Khomenko, A., and Haq, M.: Influence of nano-/microfillers on impact response of glass fibre-reinforced polymer composite. In Fillers and Reinforcements for Advanced Nanocomposites (Elsevier, Amsterdam, 2015); ch. 19.Google Scholar
Billmeyer, F.W. Jr.: Textbook of Polymer Science, 3rd ed. (John Wiley and Sons, New York, 1984).Google Scholar
Ebewele, R.C.: Polymer Science and Technology (CRC Press LLC, Boca Raton, 2000).Google Scholar
Ravve, A.: Principles of Polymer Chemistry, 3rd ed. (Springer Science + Business Media, LLC, Heidelberg, 2012).Google Scholar
Fried, J.R.: Polymer Science and Technology, 3rd ed. (Prentice Hall, Pearson Education Inc., Hoboken, 2014).Google Scholar
Carraher, C.E. Jr.: Polymer Chemistry, 7th ed. (CRC Press and Taylor and Francis Group, LLC, Boca Raton, 2008).Google Scholar
Young, R.J. and Lovell, P.A.: Introduction to Polymers, 2nd ed. (Chapman and Hall, Melbourne, 1991).Google Scholar
Davis, F.J., ed.: Polymer Chemistry—A Practical Approach (Oxford University Press, Oxford, 2004).CrossRefGoogle Scholar
ASM Metals Handbook, Vol. 21 (ASM International, Materials Park, 2013).Google Scholar
Hong-bin, T. and Cong-sheng, G.: Trans. Nonferrous Met. Soc. China 21(7), 15631567 (2011).Google Scholar
US Department of Defense: Handbook of Composite Materials, Vol. 3. Polymer Matrix Composite Materials Usage, Design and Analysis (US Department of Defense, Washington, DC, 2002).Google Scholar
Zaia, G.V.: PhD thesis, Technische Universitat München, Munich, Germany (2002).Google Scholar
Deok-Hui, N., Kim, B.G., Yoon, J.Y., Lee, M.H., Seo, W-S., Jeong, S-M., Yang, C-W., and Lee, W-J.: High-temperature chemical vapor deposition for SiC single crystal bulk growth using tetramethylsilane as a precursor. Cryst. Growth Des. 14, 55695574 (2014).Google Scholar
Forsberg, U.: PhD thesis, Thesis No. 708, Linköpings universitet, Linköpings, Sweden (2001).Google Scholar
US Department of Defense: AMPTIAC Quarterly, Vol. 9, No. 2: High performance fibers for lightweight armor (2005).Google Scholar
Mouritz, A.P.: Introduction to Aerospace Materials (Woodhead Publishing Limited, Cambridge, 2012).Google Scholar
Rawlings, R.D. and Matthews, F.L.: Composite Materials: Engineering and Science (CRC Press, Woodhead Publishing Limited, Cambridge, 1999).Google Scholar
Campbell, F.C., eds: Polymer matrix composites. In Light Weight Materials—Understanding the Basics (ASM International, Materials Park, 2012); ch. 8.Google Scholar
Baker, A., Dutton, S., and Kelly, D.: Composite Materials for Aircraft Structures, 2nd ed. (AIAA, Reston, 2004).Google Scholar
Akay, M.: An Introduction to Polymer Matrix Composites, 1st ed. Ebook, www.bookboon.com. Google Scholar
Chawla, K.K.: Composite Materials—Science and Engineering, 3rd ed. (Springer Science + Business Media, New York, 2012).Google Scholar
Wang, R-M., Zheng, S-R., and Zheng, Y-P.: Polymer Matrix Composites and Technology (Woodhead Publishing Limited and Science Press Limited, Cambridge, 2011).Google Scholar
Boczkowska, A., Awietjan, S.F., Pietrzko, S., and Kurzydłowski, K.J.: Mechanical properties of magnetorheological elastomers under shear deformation. Composites, Part B 43, 636640 (2012).Google Scholar
Bica, I., Anitas, E.M., and Averis, L.M.E.: Tensions and deformations in composites based on polyurethane elastomer and magnetorheological suspension: Effects of the magnetic field. J. Ind. Eng. Chem. 28, 8690 (2015).Google Scholar
Qiao, X., Lu, X., Gong, X., Yang, T., Sun, K., and Chen, X.: Effect of carbonyl iron concentration and processing conditions on the structure and properties of the thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS). Polym. Test. 47, 5158 (2015).CrossRefGoogle Scholar
Boczkowska, A. and Awietjan, S.: Intelligent Magnetorheological elastomer composites. Polimery 58(6), 443449 (2013).Google Scholar
Masowski, M. and Zaborski, M.: Magnetorheological materials based on ethylene–octene elastomer. Polimery 59(11–12), 825833 (2014).CrossRefGoogle Scholar
Małecki, P., Krolewicz, M., Krzak, J., and Piglowski, J.: Dynamic mechanical analysis of magnetorheological composites containing silica-coated carbonyl iron powder. J. Intell. Mater. Syst. Struct. 26(14), 18991905 (2015).Google Scholar
Aloui, S. and Klüppel, M.: Magneto-rheological response of elastomer composites with hybrid-magnetic fillers. Smart Mater. Struct. 24, 025016 (2015).Google Scholar
Biller, A.M., Stolbov, O.V., and Raikher, L.Y.: Mesoscopic magnetomechanical hysteresis in a magnetorheological elastomer. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 92, 023202 (2015).Google Scholar
Nakajima, M.E. and Heidecker, M.J.H.: Fundamentals of polymer nanocomposites technology. In Flame Retardant Polymer Nanocomposites, Morgan, A.B. and Wilkie, C.A., eds. (Wiley-Interscience, Hoboken, NJ, 2007).Google Scholar
Kandare, E.: Development of 2-d nanostructured layered hydroxy salts (LHSs) and hydroxy double salts (HDSs) for new applications: Anionic exchange kinetics and polymer modification. PhD thesis, Marquette University, Milwaukee (2006).Google Scholar
van Oss, C.J.: Interfacial Forces in Aqueous Media (Marcel Dekker, New York, 1994).Google Scholar
van Oss, C.J. and Good, R.J.: The mechanism of phase separation of polymers in organic medium-apolar and polar systems. J. Sep. Sci. Technol. 1, 1530 (1989).Google Scholar
Vaia, R.A. and Giannelis, E.P.: Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30, 79907999 (1997).Google Scholar
Vaia, R.A. and Giannelis, E.P.: Polymer melt intercalation in organicallymodified layered silicates: Model predictions and experiment. Macromolecules 30, 80008009 (1997).Google Scholar
Balazs, A.C., Singh, C., and Zhulina, E.: Modeling the interactions between polymers and clay surfaces through self-consistent field theory. Macromolecules 31, 83708381 (1998).CrossRefGoogle Scholar
Schartel, B. and Wendorff, J.H.: Molecular composites for molecular reinforcement: A promising concept between success and failure. Polym. Eng. Sci. 39(1), 128151 (1999).Google Scholar
Husman, G., Helminiak, T., Wellman, M., Adams, W., Wiff, D., and Benner, C.: Molecular composites—Rod like polymer reinforcing an amorphous polymer matrix. Technical Report, ADA086149 (Air Force Wright Aeronautical Labs, Patterson, 1980).Google Scholar
Pawlikowski, G.T., Dutta, D., and Weiss, R.A.: Molecular composites and self-reinforced liquid crystalline polymer blends. Annu. Rev. Mater. Res. 21, 159184 (1991).Google Scholar
Kotomin, S.V.: Polymer molecular composites—New history. J. Thermoplast. Compos. Mater. 26(1), 118 (2011).Google Scholar
Millan, A. and Palacio, F.: Magnetic polymer nanocomposites. In Polymer Nanocomposites, Mai, Y.W. and Yu, Z.Z., eds. (Woodhead Publishing Limited and CRC Press LLC, Cambridge, 2006); ch. 17.Google Scholar
Cheng, S.Z.D.: Phase Transitions in Polymers—The Role of Metastable States (Elsevier, Amsterdam, 2008).Google Scholar
Keith, H.D.: Phase transitions in high polymers. Metall. Trans. 4, 27472754 (1973).Google Scholar
Mussati, R.G.: Rheology of Network Forming Systems. PhD thesis, University of Minnesota, Minneapolis (1975).Google Scholar
Vilesova, M.S., Spasskova, N.P., Lesnevskaya, L.V., Guseva, G.N., Izrailev, L.G., and Zolotarev, V.M.: Polym. Sci. U.S.S.R. 14, 1883 (1972).Google Scholar
French, D.M., Strecker, R.A.H., and Tompa, A.S.: The maximum extent of reaction in Gelled Systems. J. Appl. Polym. Sci 14, 599610 (1970).CrossRefGoogle Scholar
Dave, R.S. and Loos, A.C., eds.: Processing of Composites (Carl Hanser Verlag, Munich, 2000).Google Scholar
Rabinowitch, E.: Collision Co-ordination, diffusion and reaction velocity in condensed systems. Trans. Faraday Soc. 33, 12251233 (1937).Google Scholar
Saleem, A., Frormann, L., and Iqbal, A.: Mechanical, thermal and electrical resistivity properties of thermoplastic composites filled with carbon fibers and carbon particles. J. Polym. Res. 14, 121127 (2007).Google Scholar
Roger, N.R., ed.: Particulate-filled Polymer Composites, 2nd ed. (Rapra Technology, Shrewsbury, 2003).Google Scholar
Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Bauhofer, W., and Schulte, K.: Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites, Part A 36, 15251535 (2005).Google Scholar
Haward, R.N. and Thackray, G.: Use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics. Proc. R. Soc. London, Ser. A 302(1471), 453472 (1967).Google Scholar
Boyce, M.C., Parks, D.M., and Argon, A.S.: Large inelastic deformation of glassy polymers. Part 1: Rate dependent constitutive model. Mech. Mater. 7, 1533 (1988).Google Scholar
Hasan, O.A. and Boyce, M.C.: A constitutive model for the nonlinear viscoelastic viscoplastic behaviour of glassy polymers. Polym. Eng. Sci. 35, 331344 (1995).Google Scholar
Buckley, C.P. and Jones, D.C.: Glass-rubber constitutive model for amorphous polymers near the glass transition. Polymer 36, 33013312 (1995).Google Scholar
Dooling, P.J., Buckley, C.P., and Hinduja, S.: The onset of nonlinear viscoelasticity in multiaxial creep of glassy polymers: A constitutive model and its application to PMMA. Polym. Eng. Sci. 38, 892904 (1998).Google Scholar
Gerlach, C., Buckley, C.P., and Jones, D.P.: Development of an integrated approach to modelling of polymer film orientation processes. Trans. Inst. Chem. Eng., Part A 76, 3844 (1998).Google Scholar
Tervoort, T.A., Klompen, E.T.J., and Govaert, L.E.: A multi-mode approach to finite, three-dimensional, nonlinear viscoelastic behaviour of polymer glasses. J. Rheol. 40, 779797 (1996).Google Scholar
Govaert, L.E., Timmermans, P.H.M., and Brekelmans, W.A.M.: The influence of intrinsic strain softening on strain localisation in polycarbonate: Modeling and experimental validation. J. Eng. Mater. Technol. 122, 177185 (2000).Google Scholar
Klompen, E.T.J., Engels, T.A.P., Govaert, L.E., and Meijer, H.E.H.: Modelling of the post-yield response of glassy polymers: Influence of thermomechanical history. Macromolecules 38(16), 69977008 (2005).Google Scholar
Theodorou, D.N. and Suter, U.W.: Local structure and the mechanism of response to elastic deformation in a glassy polymer. Macromolecules 19(2), 379387 (1986).Google Scholar
Kinloch, A.J. and Taylor, A.C.: The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites. J. Mater. Sci. 41(11), 32713297 (2006).Google Scholar
Fornes, T.D. and Paul, D.R.: Modelling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44(17), 49935013 (2003).Google Scholar
Luo, J-J. and Daniel, I.M.: Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Technol. 63(11), 16071616 (2003).Google Scholar
Halpin, J.C. and Pagano, N.J.: The laminate approximation of randomly oriented fibrous composites. J. Compos. Mater. 3, 720724 (1969).Google Scholar
Halpin, J.C.: Strength and expansion estimates for oriented short fibre composites. J. Compos. Mater. 3, 732734 (1969).Google Scholar
Kinloch, A.J., Maxwell, D.L., and Young, R.J.: The fracture of hybrid particulate composites. J. Mater. Sci. 20(11), 41694184 (1985).Google Scholar
Johnsen, B.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C., and Sprenger, S.: Toughening mechanisms of nanoparticle modified epoxy polymers. Polymer 48, 530541 (2007).Google Scholar
Faber, K.T. and Evans, A.G.: Crack deflection processes—I. Theory. Acta Metall. 31(4), 565576 (1983).Google Scholar
Dong, Y., Umer, R., and Lau, A.K-T., eds.: Fillers and Reinforcements for Advanced Nanocomposites (Woodhead Publishing, Cambridge, 2015).Google Scholar
Qin, Q. and Ye, J., eds.: Toughening Mechanisms in Composite Materials (Woodhead Publishing, Cambridge, 2015).Google Scholar
Althues, H., Henle, J., and Kaskel, S.: Functional inorganic nanofillers for transparent polymers. Chem. Soc. Rev. 36, 14541465 (2007).Google Scholar
Ghasemi, A., Liu, X., and Morisako, A.: Effect of additional elements on the structural properties, magnetic characteristics and natural resonance frequency of strontium ferrite nanoparticles/polymer composite. IEEE Trans. Magn. 45(10), 44204423 (2009).Google Scholar
Batlle, X., Obradors, X., Rodriguez-Carvajal, J., Pernet, M., Cabanas, M.V., and Vallet, M.: Cation distribution and intrinsic magnetic properties of Co-Ti-doped M-type barium ferrite. J. Appl. Phys. 70, 16141623 (1991).Google Scholar
Shimba, K., Furuta, K., Morimoto, N., Tezuka, N., and Sugimoto, S.: Magnetic properties of nanoparticle–polymer composites prepared using surface modification and cross-linking reaction. Mater. Trans. 52(3), 486490 (2011).Google Scholar
Mouritz, A.P.: Assessment of non–destructive evaluation techniques for defect detection in carbon fibre composite automotive wheels. Proc. Inst. Mech. Eng., Part D (2016). (under review).Google Scholar
Fischer, H.: Polymer nanocomposites: From fundamental research to specific applications. Mater. Sci. Eng., C 23, 763772 (2003).Google Scholar