Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T18:44:34.478Z Has data issue: false hasContentIssue false

Ferroelectric properties of heteroepitaxial PbTiO3 and PbZr1–xTixO3 films on Nb-doped SrTiO3 fabricated by hydrothermal epitaxy below Curie temperature

Published online by Cambridge University Press:  03 March 2011

S.H. Han
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Yuseong Gu, Daejeon, Republic of Korea 305-701
W.S. Ahn
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Yuseong Gu, Daejeon, Republic of Korea 305-701
H.C. Lee
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Yuseong Gu, Daejeon, Republic of Korea 305-701
S.K. Choi*
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Yuseong Gu, Daejeon, Republic of Korea 305-701
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

PbTiO3 (PTO) and PbZr1-xTixO3 (PZT) films on a (100) Nb-doped SrTiO3 (NSTO) substrate were fabricated at 160 and 210 °C, respectively, by hydrothermal epitaxy below the Curie temperature, TC. The PTO capacitor had a square hysteresis curve compared to the rounded hysteresis curve of the PZT capacitor. These differing behaviors in the polarization-electric hysteresis curves can be explained by the existence of an interfacial layer formed between the PZT film and the NSTO substrate. The PZT capacitor showed almost no polarization fatigue after 1011 switching cycles. However, the PTO capacitor revealed a slightly different fatigue behavior due to the microvoids that formed as a result of the agglomeration of the island growth mode. However, the fatigue behavior of both capacitors revealed that defects, such as the lead or oxygen vacancies, were suppressed by the hydrothermal epitaxy using a very low fabrication temperature below TC.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ramesh, R.: Thin Film Ferroelectric Materials and Devices (Kluwer Academic Publishers, Boston, 1997).CrossRefGoogle Scholar
2Yi, G., Wu, Z., and Sayer, M.: Preparation of Pb(Zr,Ti)O3 thin films by sol gel processing: Electrical, optical, and electro-optic properties. J. Appl. Phys. 64, 2717 (1988).CrossRefGoogle Scholar
3Sreenivas, K. and Sayer, M.: Characterization of Pb(Zr,Ti)O3 thin films deposited from multielement metal targets. J. Appl. Phys. 64, 1484 (1999).CrossRefGoogle Scholar
4Horwitz, J.S., Grabowski, K.S., Chrisey, D.B., and Leuchtner, R.E.: In-situ deposition of epitaxial PbZrxTi1-xO3 thin films by pulsed laser deposition. Appl. Phys. Lett. 59, 1565 (1991).CrossRefGoogle Scholar
5Scott, J.F., Araujo, C.A., Melnick, B.M., McMillan, L.D., and Zuleeg, R.: Quantitative measurement of space-charge effects in lead zirconate-titanate memories. J. Appl. Phys. 70, 382 (1991).CrossRefGoogle Scholar
6Bernstein, S.D., Wong, T.Y., Kisler, Y., and Tustison, R.W.: Fatigue of ferroelectric PbZrxTiyO3 capacitors with Ru and RuOx electrodes. J. Mater. Res. 8, 12 (1993).CrossRefGoogle Scholar
7Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V.G., Haakenaasen, R., and Fork, D.K.: Ferroelectric La-Sr-Co-O/Pb-Zr-Ti-O/La-Sr-Co-O heterostructures on silicon via template growth. Appl. Phys. Lett. 63, 3592 (1993).CrossRefGoogle Scholar
8Lee, J., Johnson, L., Safari, A., Ramesh, R., Sands, T., Gilchrist, H., and Keramidas, V.G.: Effects of crystalline quality and electrode material on fatigue in Pb(Zr,Ti)O3 thin film capacitors. Appl. Phys. Lett. 63, 27 (1993).CrossRefGoogle Scholar
9Asano, G., Morioka, H., Funakubo, H., Shibutami, T., and Oshima, N.: Fatigue-free RuO2/Pb(Zr,Ti)O3/RuO2 capacitor prepared by metalorganic chemical vapor deposition at 395 °C. Appl. Phys. Lett. 83, 5506 (2003).CrossRefGoogle Scholar
10Nakamura, T., Nakao, Y., Kamisawa, A., and Takasu, H.: Preparation of Pb(Zr,Ti)O3 thin films on Ir and IrO2 electrodes. Jpn. J. Appl. Phys., Part 1 33, 5207 (1994).CrossRefGoogle Scholar
11Wang, Y.K., Tseng, T.Y., and Lin, P.: Enhanced ferroelectric properties of Pb(Zr0.53Ti0.47)O3 thin films on SrRuO3/Ru/SiO2/Si substrates. Appl. Phys. Lett. 80, 3790 (2002).CrossRefGoogle Scholar
12Tagantsev, A.K., Stolichnov, I., Colla, E.L., and Setter, N.: Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features. J. Appl. Phys. 90, 1387 (2001).CrossRefGoogle Scholar
13Lange, F.F.: Chemical solution routes to single-crystal thin films. Science 273, 903 (1996).CrossRefGoogle ScholarPubMed
14Chien, A.T., Sachleben, J., Kim, J.H., Speck, J.S., and Lange, F.F.: Synthesis and characterization on PbTiO3 powders and heteroepitaxial thin films by hydrothermal synthesis. J. Mater. Res. 14, 3303 (1999).CrossRefGoogle Scholar
15Chien, A.T., Xu, X., Kim, J.H., Sachleben, J., Speck, J.S., and Lang, F.F.: Electrical characterization of BaTiO3 heteroepitaxial thin films by hydrothermal synthesis. J. Mater. Res. 14, 3330 (1999).CrossRefGoogle Scholar
16You, D.J., Jung, W.W., and Choi, S.K.: Domain structure in a micro-sized PbZr1-xTixO3 single crystal on a Ti substrate fabricated by hydrothermal synthesis. Appl. Phys. Lett. 84, 3346 (2004).CrossRefGoogle Scholar
17Ahn, S.H., Jung, W.W., and Choi, S.K.: Size dependence of initial polarization direction in nanosized epitaxial PbTiO3 islands fabricated by hydrothermal epitaxy below Curie temperature. Appl. Phys. Lett. 86, 172901 (2005).CrossRefGoogle Scholar
18Jung, W.W., Lee, H.C., Ahn, W.S., Ahn, S.H., and Choi, S.K.: Switchable single c-domain formation in a heteroepitaxial PbTiO3 thin film on a (001) Nb-SrTiO3 substrate fabricated by means of hydrothermal epitaxy. Appl. Phys. Lett. 86, 252901 (2005).CrossRefGoogle Scholar
19Choi, S.K., Ahn, S.H., and Jung, W.W.: Observation of [110] surface band within {101} a domain stripe of heteroepitaxial PbTiO3 thin film fabricated by hydrothermal epitaxy. Appl. Phys. Lett. 88, 052901 (2006).CrossRefGoogle Scholar
20Ahn, W.S., Jung, W.W., and Choi, S.K.: Ferroelectric properties and fatigue behavior of heteroepitaxial PbZr1-xTixO3 thin film fabricated by hydrothermal epitaxy below Curie temperature. J. Appl. Phys. 99, 014103 (2006).CrossRefGoogle Scholar
21Ahn, W.S., Jung, W.W., and Choi, S.K.: Retension loss phenomena in hydrothermally fabricated heteroepitaxial PbTiO3 films studied by scanning-probe microscopy. Appl. Phys. Lett. 88, 082902 (2006).CrossRefGoogle Scholar
22Kurasawa, M. and McIntyre, P.C.: Surface passivation and electronic structure characterization of PbTiO3 thin films and Pt/PbTiO3 interfaces. J. Appl. Phys. 97, 104110 (2005).CrossRefGoogle Scholar
23Wurfel, P. and Batra, I.P.: Depolarization-field-induced instability in thin ferroelectric films: Experiment and theory. Phys. Rev. B: Condens. Matter 8, 5126 (1973).CrossRefGoogle Scholar
24Wurfel, P., Batra, I.P., and Jacobs, J.T.: Polarization instability in thin ferroelectric films. Phys. Rev. Lett. 30, 1218 (1973).CrossRefGoogle Scholar
25Kwak, B.S., Erbil, A., Budai, J.D., Chisholm, M.F., Boatner, L.A., and Wilkens, B.J.: Domain formation and strain relaxation in epitaxial ferroelectric heterostructures. Phys. Rev. B: Condens. Matter 49, 14865 (1994).CrossRefGoogle ScholarPubMed
26Xu, Y.: Ferroelectric Materials and Their Applications (North-Holland, Amsterdam, 1991), p. 109.Google Scholar
27Araujo, C.A., Cuchiaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F.: Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627 (1995).CrossRefGoogle Scholar
28Fu, L.F., Welz, S.J., Browning, N.D., Kurasawa, M., and McIntyre, P.C.: Z-contrast and electron energy loss spectroscopy study of passive layer formation at ferroelectric PbTiO3/Pt interfaces. Appl. Phys. Lett. 87, 262904 (2005).CrossRefGoogle Scholar