Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T07:46:08.390Z Has data issue: false hasContentIssue false

Ferroelasticity of the displacive tetragonal phase in Y2O3 partially stabilized ZrO2 (Y-PSZ) single crystals

Published online by Cambridge University Press:  31 January 2011

J. Martínez-Fernández
Affiliation:
Departmento de Física de la Materia Condensada-Instituto de Ciencia de Materiales, Universidad de Sevilla-CSIC, Apdo. 1065, 41080 Sevilla, Spain
A. Domínguez-Rodríguez
Affiliation:
Departmento de Física de la Materia Condensada-Instituto de Ciencia de Materiales, Universidad de Sevilla-CSIC, Apdo. 1065, 41080 Sevilla, Spain
Get access

Abstract

Ferroelasticity of the tetragonal displacive (t′) phase was studied on 4.7 mol% Y2O3 partially stabilized zirconia single crystals. Samples were deformed at 1400 °C at constant strain rate to induce the ferroelastic behavior. Domain reorientation due to the applied stress has been studied as a function of the compression axis and aging time at 1600 °C. Domain switching was found in the as-received and 2-h-aged crystals deformed along the 〈100〉 direction, in which an exceptional high flow stress was reached (>700 MPa). Transmission electron microscopy observations were performed on deformed and undeformed crystals to study the microstructural changes associated with the domain switching. Incremental strain steps on the stress-strain curves and surface texture on the lateral faces of the deformed samples were correlated with the microstructural evidence.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Green, D. J., Hannink, R. H. J., and Swain, M. V., Transformation Toughening of Ceramics (CRC Press, Boca Raton, FL, 1989).Google Scholar
2.Wakai, F., Kodama, Y., and Nagano, T., Jpn. J. Appl. Phys. 2, 57 (1989).Google Scholar
3.Bravo-León, A., Jiménez-Melendo, M., and Domínguez-Rodríguez, A., Acta Metall. 40, 2717 (1992).CrossRefGoogle Scholar
4.Domínguez-Rodríguez, A., Lagerlof, K. P. D., and Heuer, A.H., J. Am. Ceram. Soc. 69, 281 (1986).CrossRefGoogle Scholar
5.Domínguez-Rodríguez, A., Lanteri, V., and Heuer, A. H., J. Am. Ceram. Soc. 69, 285 (1986).CrossRefGoogle Scholar
6.Heuer, A. H., Lanteri, V., and Domínguez-Rodríguez, A., Acta Metall. 37, 559 (1989).CrossRefGoogle Scholar
7.Martínez-Fernández, J., Jiménez-Melendo, M., Domínguez-Rodríguez, A., Lagerlof, K.P.D., and Heuer, A. H., Acta Metall. 41, 3171 (1993).CrossRefGoogle Scholar
8.Lanteri, V., Chaim, R., and Heuer, A. H., J. Am. Ceram. Soc. 69, C258 (1986).Google Scholar
9.Sakuma, T., J. Mater. Sci. 22, 4470 (1987).CrossRefGoogle Scholar
10.Heuer, A. H., Chaim, R., and Lanteri, V., in Advances in Ceramics: Vol. 24, edited by Sōmiya, S., Yamamoto, N., and Hanagida, H. (American Ceramic Society, Westerville, OH, 1988), p. 3.Google Scholar
11.Sheu, T. S., Tien, T. Y., and Chen, I.W., J. Am. Ceram. Soc. 75, 1108 (1992).CrossRefGoogle Scholar
12.Sakuma, T., in Science and Technology of Zirconia, edited by Badwal, S. P. S., Bannister, M. J., and Hannink, R. H. J. (Technomic Publishing, Lancaster, PA, 1993), p. 86.Google Scholar
13.Virkar, A. V. and Matsumoto, R. L. K., in Advances in Ceramics: Vol. 24, edited by Sōmiya, S., Yamamoto, N., and Hanagida, H. (American Ceramic Society, Westerville, OH, 1988), p. 652.Google Scholar
14.Srinivasan, G. V., Jue, J.F., Kuo, S. Y., and Kirkar, A. V., J. Am. Ceram. Soc. 72, 2098 (1989).CrossRefGoogle Scholar
15.Chan, C. J., Lange, F. F., Rühle, M., Jue, J.F., and Virkar, A. V., J. Am. Ceram. Soc. 74, 807 (1991).CrossRefGoogle Scholar
16.Jue, J. F., Chen, J., and Virkar, A. V., J. Am. Ceram. Soc. 74, 1811 (1991).CrossRefGoogle Scholar
17.Michel, D., Mazerolles, L., and Perez, M. y Jorba, , in Advances in Ceramics: Vol. 12, edited by Claussen, N., Ruhle, M., and Heuer, A. H. (American Ceramic Society, Westerville, OH, 1984), p. 131.Google Scholar
18.Lankford, K., J. Mater. Sci. 21, 1981 (1986).CrossRefGoogle Scholar
19.Lankford, J., Page, R. A., and Rabenberg, L., J. Mater. Sci. 23, 4144 (1988).CrossRefGoogle Scholar
20.Ingel, R. P., Lewis, D., Bender, B. A., and Rice, R. W., J. Am. Ceram. Soc. 65, C150 (1982).CrossRefGoogle Scholar
21.Ingel, R. P., Lewis, D., Bender, B. A., and Rice, R. W., in Advances in Ceramics: Vol. 12, edited by Claussen, N., Ruhle, M., and Heuer, A. H. (American Ceramic Society, Westerville, OH, 1984), p. 408.Google Scholar
22.Baker, T. L., Faber, K. T., and Readey, D. W., J. Am. Ceram. Soc. 75, 1619 (1991).CrossRefGoogle Scholar
23.Martínez-Fernández, J., Jiménez-Melendo, M., Domínguez-Rodríguez, A., Behrens, G., and Heuer, A. H., in Science and Technology of Zirconia, edited by Badwal, S. P. S., Bannister, M. J., and Hannink, R. H. J. (Technomic Publishing, Lancaster, PA, 1993), p. 3.Google Scholar
24.Martínez-Fernández, J., Jiménez-Melendo, M., and Domínguez-Rodríguez, A., Acta Metall. 43, 593 (1995).CrossRefGoogle Scholar
25.Martínez-Fernández, J., Jiménez-Melendo, M., Domínguez-Rodríguez, A., Cordier, P., Lagerlof, K. P. D., and Heuer, A. H., Acta Metall. 43, 2469 (1995).CrossRefGoogle Scholar
26.Domínguez-Rodríguez, A., Cheong, D-S., and Heuer, A. H., Philos. Mag. 64, 923 (1991).CrossRefGoogle Scholar
27.Ingel, R. P. and Lewis, D., J. Am. Ceram. Soc. 69, 325 (1986).CrossRefGoogle Scholar