Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-30T22:23:15.188Z Has data issue: false hasContentIssue false

Facile synthesis of poly(methylsilsesquioxane) and MgO nanoparticle composite dielectrics

Published online by Cambridge University Press:  22 May 2013

Natalie Olivia Victoria Plank*
Affiliation:
MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
Han Yue Zheng
Affiliation:
MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
Satya Agarwal
Affiliation:
MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
Dayna Kivell
Affiliation:
School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
Gideon Gouws
Affiliation:
School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
Jadranka Travas-Sejdic
Affiliation:
Polymer Electronics Research Center and MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The use of MgO nanoparticle (NP) loaded poly(methylsilsesquioxane) (PMSQ) as a low temperature processable composite dielectric has been investigated. The composite dielectrics have been synthesized using facile ultrasonic mixing of trimethoxymethylsilane (MTS), butanol (n-BuOH) and deionized water at 60 °C, with MgO loadings from 0.096 up to 0.39 wt% of the initial solution. Thin films of the composite materials produced have shown an increase in dielectric constant from 2.8 for raw PMSQ up to 3.4 for the 0.39 wt% loaded PMSQ + MgO NP composites at frequencies up to 2 MHz, comparable to 3.9 for SiO2. The composite dielectric materials have shown suitability as a dielectric material for a P3HT OFET, with the performance comparable to a standard SiO2 dielectric control sample.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ponce Ortiz, R., Facchetti, A., and Marks, T.J.: High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 110, 205239 (2010).CrossRefGoogle ScholarPubMed
Ko, H., Kapadia, R., Takei, K., Takahashi, T., Zhang, X., and Javey, A.: Multifunctional, flexible electronic systems based on engineered nanostructured materials. Nanotechnology 23, 344001 (2012).CrossRefGoogle ScholarPubMed
Sirringhaus, H.: Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17, 24112425 (2005).CrossRefGoogle Scholar
Nagase, T., Hamada, T., Tomatsu, K., Yamazaki, S., Kobayashi, T., Murakami, S., Matsukawa, K., and Naito, H.: Low-temperature processable organic-inorganic hybrid gate dielectrics for solution-based organic field-effect transistors. Adv. Mater. 22, 47064710 (2010).CrossRefGoogle ScholarPubMed
Yang, C., Hong, K., Jang, J., Chung, D.S., An, T.K., Choi, W-S., and Park, C.E.: Solution-processed flexible ZnO transparent thin-film transistors with a polymer gate dielectric fabricated by microwave heating. Nanotechnology 20, 465201 (2009).CrossRefGoogle ScholarPubMed
Tan, H.S., Kulkarni, S.R., Cahyadi, T., Lee, P.S., Mhaisalkar, S.G., Kasim, J., Shen, Z.X., and Zhu, F.R.: Solution-processed trilayer inorganic dielectric for high performance flexible organic field effect transistors. Appl. Phys. Lett. 93, 183503 (2008).CrossRefGoogle Scholar
Cai, Q.J., Gan, Y., Chan-Park, M.B., Bin Yang, H., Lu, Z.S., Song, Q.L., Li, C.M., and Li Dong, Z.: Solution-processable organic-capped titanium oxide nanoparticle dielectrics for organic thin-film transistors. Appl. Phys. Lett. 93, 113304 (2008).CrossRefGoogle Scholar
Schroeder, R., Majewski, L.A., and Grell, M.: High-performance organic transistors using solution-processed nanoparticle-filled high-k polymer gate insulators. Adv. Mater. 17, 15351539 (2005).CrossRefGoogle Scholar
Chon, J., Ye, S., Cha, K.J., Lee, S.C., Koo, Y.S., Jung, J.H., and Kwon, Y.K.: High-κ dielectric sol−gel hybrid materials containing barium titanate nanoparticles. Chem. Mater. 22, 54455452 (2010).CrossRefGoogle Scholar
Chen, F-C., Chu, C-W., He, J., Yang, Y., and Lin, J-L.: Organic thin-film transistors with nanocomposite dielectric gate insulator. Appl. Phys. Lett. 85, 3295 (2004).CrossRefGoogle Scholar
Kim, J., Lim, S.H., Kim, Y.S., and Kim, Y.S.: Solution-based TiO2-polymer composite dielectric for low operating voltage OTFTs. J. Am. Chem. Soc. 132, 1472114723 (2010).CrossRefGoogle ScholarPubMed
Yang, F-Y., Hsu, M-Y., Hwang, G-W., and Chang, K-J.: High-performance poly(3-hexylthiophene) top-gate transistors incorporating TiO2 nanocomposite dielectrics. Org. Electron. 11, 8188 (2010).CrossRefGoogle Scholar
Wei, Q., You, E., Hendricks, N.R., Briseno, A.L., and Watkins, J.J.: Flexible low-voltage polymer thin-film transistors using supercritical CO2-deposited ZrO2 dielectrics. ACS Appl. Mater. Interfaces 4, 23222324 (2012).CrossRefGoogle ScholarPubMed
Zirkl, M., Haase, A., Fian, A., Schön, H., Sommer, C., Jakopic, G., Leising, G., Stadlober, B., Graz, I., Gaar, N., Schwödiauer, R., Bauer-Gogonea, S., and Bauer, S.: Low-voltage organic thin-film transistors with high-k nanocomposite gate dielectrics for flexible electronics and optothermal sensors. Adv. Mater. 19, 22412245 (2007).CrossRefGoogle Scholar
Ha, Y-G., Jeong, S., Wu, J., Kim, M-G., Dravid, V.P., Facchetti, A., and Marks, T.J.: Flexible low-voltage organic thin-film transistors enabled by low-temperature, ambient solution-processable inorganic/organic hybrid gate dielectrics. J. Am. Chem. Soc. 132, 1742617434 (2010).CrossRefGoogle ScholarPubMed
Lee, S.H., Jeong, S., and Moon, J.: Nanoparticle-dispersed high-k organic–inorganic hybrid dielectrics for organic thin-film transistors. Org. Electron. 10, 982989 (2009).CrossRefGoogle Scholar
Wang, C-H., Hsieh, C-Y., and Hwang, J-C.: Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv. Mater. 23, 16301634 (2011).CrossRefGoogle ScholarPubMed
Ooi, P.C., Ahmad, Z., Aw, K.C., Gao, W., Travas-Sejdic, J., M.H.S.: Nonvolatile Memory Using Gold Nanoparticles and Sol-Gel Polymethylsilsesquioxane. International Conference on Materials for Advanced Technologies, Suntec, Singapore, 2011.Google Scholar
Chuang, W-P., Sheen, Y-C., Wei, S-M., Teng, C-C., Yen, M-Y., and Ma, C-C.M.: Phase segregation of polymethylsilsesquioxane in antireflection coatings. Macromolecules 44, 48724878 (2011).CrossRefGoogle Scholar
Chuang, W-P., Sheen, Y-C., Wei, S-M., Teng, C-C., Yen, M-Y., and Ma, C-C.M.: Pyrolysis of polymethylsilsesquioxane. J. Appl. Polym. Sci. 85, 10771086 (2002).Google Scholar
Duan, Q., Zhang, Y., Jiang, J., Deng, K., Zhang, T., Xie, P., Zhang, R., and Fu, P.: Synthesis and characterization of ethoxy-terminated ladder-like polymethylsilsesquioxane oligomer. Polym. Int. 53, 113120 (2004).CrossRefGoogle Scholar
Liu, H., Xu, J., Li, Y., Li, B., Ma, J., and Zhang, X.: Fabrication and characterization of an organic-inorganic gradient surface made by polymethylsilsesquioxane (PMSQ). Macromol. Rapid Commun. 27, 16031607 (2006).CrossRefGoogle Scholar
Xiang, H., Zhang, L., Wang, Z., Yu, X., Long, Y., Zhang, X., Zhao, N., and Xu, J.: Multifunctional polymethylsilsesquioxane (PMSQ) surfaces prepared by electrospinning at the sol-gel transition: superhydrophobicity, excellent solvent resistance, thermal stability and enhanced sound absorption property. J. Colloid. Interface Sci. 359, 296303 (2011).CrossRefGoogle ScholarPubMed
Xi, K., He, H., Xu, D., Ge, R., Meng, Z., Jia, X., and Yu, X.: Ultra low dielectric constant polysilsesquioxane films using T8(Me4NO)8 as porogen. Thin Solid Films 518, 47684772 (2010).CrossRefGoogle Scholar
Ro, H.W., Kim, K.J., Theato, P., Gidley, D.W., and Yoon, D.Y.: Novel inorganic−organic hybrid block copolymers as pore generators for nanoporous ultralow-dielectric-constant films. Macromolecules 38, 10311034 (2005).CrossRefGoogle Scholar
Petrovsky, V., Manohar, A., and Dogan, F.: Dielectric constant of particles determined by impedance spectroscopy. J. Appl. Phys. 100, 014102 (2006).CrossRefGoogle Scholar
Garnett, J.C.M.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. London, Ser. A 203, 385420 (1904).Google Scholar
Park, B., Kim, Y.J., Graham, S., and Reichmanis, E.: Change in electronic states in the accumulation layer at interfaces in a poly(3-hexylthiophene) field-effect transistor and the impact of encapsulation. ACS Appl. Mater. Interfaces 3, 35453551 (2011).CrossRefGoogle Scholar
Reséndiz, L., Estrada, M., Cerdeira, A., Iñiguez, B., and Deen, M.J.: Effect of active layer thickness on the electrical characteristics of polymer thin film transistors. Org. Electron. 11, 19201927 (2010).CrossRefGoogle Scholar
Pretl, S., Kroupa, M., Hamáček, A., Džugan, T., Řeboun, J., and Čengery, J.: Characterization of the Organic Field – Effect Transistor Based on Solution Processed P3HT. 33rd International Spring Seminar on Electronics Technology 24–29, Warsaw, Poland, 2010.CrossRefGoogle Scholar