Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T12:01:06.588Z Has data issue: false hasContentIssue false

Facile preparation of hydrophilic sodium yttrium fluoride nanorods using hydrophobic nanospheres as precursor

Published online by Cambridge University Press:  07 June 2012

Qingling Tao
Affiliation:
Department of Materials Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China
Zhengquan Li*
Affiliation:
Department of Materials Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China
Yubin Zeng
Affiliation:
Department of Materials Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China
Yong Zhang*
Affiliation:
Department of Bioengineering, National University of Singapore, Singapore 117576
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Synthesis of well-defined sodium yttrium fluoride (NaYF4) nanocrystals has been achieved in nonpolar solvents, but these nanocrystals possess a hydrophobic surface and need to be surface-modified for various biological applications. Development of facile aqueous solution method to synthesize one-dimensional NaYF4 with a hydrophilic surface still remains challenging. Herein, we demonstrate a simple route to prepare hydrophilic NaYF4 nanorods by using hydrophobic NaYF4 nanospheres as precursor. It is interesting to find that hydrothermal treatment of oleic acid-capped NaYF4 nanocrystals can not only induce anisotropic growth of these nanocrystals but also change their surface properties. The hydrophilic NaYF4 nanorods synthesized in this work has been well characterized and possible formation mechanism has also been discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wang, F. and Liu, X.G.: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976 (2009).CrossRefGoogle ScholarPubMed
2.Zhou, J., Liu, Z., and Li, F.Y.: Upconversion nanosphosphors for small-animal imaging. Chem. Soc. Rev. 41, 1323 (2012).CrossRefGoogle ScholarPubMed
3.Chatterjee, D.K., Gnanasammandhan, M.K., and Zhang, Y.: Small upconverting fluorescent nanoparticles for biomedical applications. Small 6, 2781 (2011).CrossRefGoogle Scholar
4.Li, C.X. and Lin, J.: Rare earth fluoride nano-/microcrystals: Synthesis, surface modification and application. J. Mater. Chem. 20, 6831 (2010).CrossRefGoogle Scholar
5.Chatterjee, D.K., Rufalhah, A.J., and Zhang, Y.: Upconversion fluorescence imaging of cells and small animals using lanthanide-doped nanocrystals. Biomaterials 29, 937 (2008).CrossRefGoogle ScholarPubMed
6.Nyk, M., Kumar, R., Ohulchanskyy, T.Y., Bergey, E.J., and Prasad, P.N.: High contrast in vitro and in vivo photoluminescence bioimaging using near-infrared to near-infrared upconversion in Tm3+ and Yb3+-doped fluoride nanosphosphors. Nano Lett. 8, 3834 (2008).CrossRefGoogle Scholar
7.Idris, N.M., Li, Z.Q., Ye, L., Sim, E.K.W., Mahendran, R., Ho, P.C.L., and Zhang, Y.: Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterials 30, 5104 (2009).CrossRefGoogle ScholarPubMed
8.Xiong, L.Q., Yang, T.S., Yang, Y., Xu, C.J., and Li, F.Y.: Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 31, 7078 (2010).CrossRefGoogle ScholarPubMed
9.Wang, G.F., Peng, Q., and Li, Y.D.: Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties and applications. Acc. Chem. Res. 44, 322 (2011).CrossRefGoogle ScholarPubMed
10.Shen, J., Sun, L.D., and Yan, C.H.: Luminescent rare earth nanomaterials for bioprobe applications. Dalton Trans. 42, 5687 (2008).CrossRefGoogle Scholar
11.Wang, L.Y., Yan, R.X., Hao, Z.Y., Wang, L., Zeng, J.H., Bao, H., Wang, X., Peng, Q., and Li, Y.D.: Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 44, 6054 (2005).CrossRefGoogle ScholarPubMed
12.Liu, J.L., Liu, Y., Liu, Q., Li, C.Y., Sun, L.N., and Li, F.Y.: Iridium(III) complex-coated nanosystem for ratiometric upconversion luminescence bioimaging of cyanide anions. J. Am. Chem. Soc. 133, 15276 (2011).CrossRefGoogle ScholarPubMed
13.Mai, H.X., Zhang, Y.W., Si, R., Yan, Z.G., Sun, L.D., You, L.P., and Yan, C.H.: High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 128, 6426 (2006).CrossRefGoogle ScholarPubMed
14.Wang, L.Y. and Li, Y.D.: Controlled synthesis and luminescence of lanthanide-doped NaYF4 nanocrystals. Chem. Mater. 19, 727 (2007).CrossRefGoogle Scholar
15.Li, Z.Q. and Zhang, Y.: An efficient and user-friendly method for the synthesis of hexagonal phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 19, 345606 (2008).CrossRefGoogle Scholar
16.Chen, Z.G., Chen, H.L., Hu, H., Yu, M.X., Li, F.Y., Zhang, Q., Zhou, Z.G., Tao, Y., and Huang, C.H.: Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanosphosphor as biological labels. J. Am. Chem. Soc. 130, 3023 (2011).CrossRefGoogle Scholar
17.Li, Z.Q., Zhang, Y., and Jiang, S.: Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20, 4765 (2008).CrossRefGoogle Scholar
18.Yi, G.S., Lu, H.C., Zhao, S.Y., Yue, G., Yang, W.J., Chen, D.P., and Guo, L.H.: Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible upconversion phosphors. Nano Lett. 4, 2191 (2004).CrossRefGoogle Scholar
19.Zeng, J.H., Su, J., Li, Z.H., Yan, R.X., and Li, Y.D.: Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3+ phosphors of controlled size and morphology. Adv. Mater. 17, 2119 (2005).CrossRefGoogle Scholar
20.Li, C.X., Zhang, C.M., Hou, Z.Y., Wang, L.L., Quan, Z.W., Lian, H.Z., and Lin, J.: beta-NaYF4 and beta-NaYF4:Eu3+ microstructures: Morphology control and tunable luminescence properties. J. Phys. Chem. C 113, 2332 (2009).CrossRefGoogle Scholar
21.Olesiak-Banska, J., Nyk, M., Kaczmarek, D., Matczyszyn, K., Pawlik, K., and Samoc, M.: Synthesis and optical properties of water-soluble fluoride nanosphosphors co-doped with Eu3+ and Tb3+. Opt. Mater. 33, 1419 (2011).CrossRefGoogle Scholar
22.Zeng, H.C.: Synthetic architecture of interior space for inorganic nanostructures. J. Mater. Chem. 16, 649 (2006).CrossRefGoogle Scholar
23.Wu, C.Z. and Xie, Y.: Controlling phase and morphology of inorganic nanostructures originated from the internal crystal structure. Chem. Commun. 40, 5943 (2009).CrossRefGoogle Scholar
24.Heer, S., Kompe, K., Gudel, H.U., and Haase, M.: Highly efficient multicolor upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102 (2004).CrossRefGoogle Scholar
25.Qian, L.P., Yuan, D., Yi, G.S., and Chow, G.M.: Critical shell thickness and emission enhancement of NaYF4:Yb, Er/NaYF4/silica core/shell nanoparticles. J. Mater. Res. 24, 3559 (2009).CrossRefGoogle Scholar
Supplementary material: PDF

Tao et al. supplementary material

Supplementary figures

Download Tao et al. supplementary material(PDF)
PDF 852.1 KB