Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T07:58:09.501Z Has data issue: false hasContentIssue false

Faceting, dislocation network structure, and various scales of heterogeneity in a YBa2Cu3O7−δ low-angle [001] tilt boundary

Published online by Cambridge University Press:  31 January 2011

I-Fei Tsu
Affiliation:
Materials Science and Engineering and Applied Superconductivity Center, University of Wisconsin-Madison, Madison, Wisconsin 53706–1687
S. E. Babcock
Affiliation:
Materials Science and Engineering and Applied Superconductivity Center, University of Wisconsin-Madison, Madison, Wisconsin 53706–1687
D.L. Kaiser
Affiliation:
Ceramics Division, NIST, Gaithersburg, Maryland 20899
Get access

Abstract

The grain boundary topography and grain boundary dislocation network structure of a 6° [001] bicrystal of YBa2Cu3O7−δ were studied using diffraction-contrast transmission electron microscopy (TEM). Saw-tooth-shaped arrays of facets composed of facets with lengths of a few tens of nanometers were observed in each of two widely separated sections of the boundary. The facet planes were {110}, {310}, and {221}. Further subfaceting of the (130) facets into a smaller-scale (a few nanometers) saw-tooth configuration of (010) and (110) facets produced a hierarchy of facets in at least one boundary section. The dislocation content observed in each type of facet agreed well with Frank's formula. However, the dislocations within individual facets frequently were inhomogeneously distributed, contrasting the picture of evenly spaced dislocations that is derived for boundaries of infinite extent. Certain types of dislocations repeatedly were grouped near the facet centers and ends. Well-separated partial dislocations frequently were observed near the facet midsections, but not near the facet junctions. Extended (∼30 nm) strain contrast was observed at all of the facet junctions formed by facets with dimensions on the order of tens of nanometers. This long-range strain may be due to the finite extent of the individual facets. These results all suggest that structural inhomogeneities occur on various length scales ranging from macroscopic to just a few nanometers. Such structural heterogeneity is consistent with the electrical heterogeneity that is indicated for many YBa2Cu3O7−δ grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
2.Gross, R., in High Temperature Superconducting Systems, edited by Shindé, S. L. and Rudman, D. (Springer-Verlag, New York, 1992), p. 176.Google Scholar
3.Ivanov, Z. G., Nilsson, P. Å., Winkler, S., Alarco, J. A., Claeson, T., Stepantsov, E. A., and Ya, A.. Tzalenchuk, Appl. Phys. Lett. 59, 3030 (1991).CrossRefGoogle Scholar
4.Char, K., Colclough, M. S., Garrison, S. M., Newman, N., and Zaharchuk, G., Appl. Phys. Lett. 59, 733 (1991).CrossRefGoogle Scholar
5.Vuchic, B. V., Merkle, K. L., Dean, K. A., Buchholz, D. B., Chang, R. P. H., and Marks, L. D., Appl. Phys. Lett. 67, 1013 (1995).CrossRefGoogle Scholar
6.Lew, D. J., Suzuki, Y., Marshall, A. F., Geballe, T. H., and Beaseley, M. R., Appl. Phys. Lett. 65, 1584 (1994).CrossRefGoogle Scholar
7.Parikh, A. S., Meyer, B., and Salama, K., Supercond. Sci. Technol. 7, 455 (1994).CrossRefGoogle Scholar
8.Field, M. B., Cai, X. Y., Babcock, S.E., and Larbalestier, D. C., IEEE Trans. Supercond. 3, 1479 (1993).CrossRefGoogle Scholar
9.Babcock, S. E., Cai, X. Y., Kaiser, D. L., and Larbalestier, D. C., Nature (London) 347, 167 (1990).CrossRefGoogle Scholar
10.Larbalestier, D. C., Babcock, S.E., Cai, X. Y., Field, M. B., Gao, Y., Heinig, N. F., Kaiser, D. L., Merkle, K., Williams, L. K., and Zhang, N., Physica C 185–189, 315 (1991).CrossRefGoogle Scholar
11.Babcock, S. E., Cai, X. Y., Larbalestier, D. C., Shin, D. H., Zhang, Na, Zhang, H., Kaiser, D. L., and Gao, Y., Physica C 227, 183 (1994).CrossRefGoogle Scholar
12.Chisholm, M. F. and Pennycook, S. J., Nature (London) 351, 47 (1991).CrossRefGoogle Scholar
13.Gao, Y., Merkle, K. L., Bai, G., Chang, H. L. M., and Lam, D. J., Ultramicroscopy 37, 326 (1991).CrossRefGoogle Scholar
14.Sarnelli, E., Chaudhari, P., and Lacey, J., Appl. Phys. Lett. 62, 777 (1993).CrossRefGoogle Scholar
15.Read, R. T., Dislocations in Crystals (McGraw-Hill, New York, 1953), Chap. 12.Google Scholar
16.Field, M., Pashitski, A., Polyanskii, A., Larbalestier, D. C., Parikh, A. S., and Salama, K., IEEE Trans. Appl. Supercond. 5, 1631 (1995).CrossRefGoogle Scholar
17.Nabatame, T., Koike, S., Hyun, O. B., Hirabayashi, I., Suhara, H., and Nakamura, K., Appl. Phys. Lett. 65, 776 (1994).CrossRefGoogle Scholar
18.Eom, C. B., Marshall, A. F., Suzuki, Y., Boyer, B., Pease, R. F. W., and Geballe, T. H., Nature (London) 353, 544 (1991).CrossRefGoogle Scholar
19.Eom, C. B., Marshall, A. F., Suzuki, Y., Boyer, B., Pease, R. F. W., and van Dover, R. B., Phys. Rev. B 46, 11902 (1992).CrossRefGoogle Scholar
20.Jia, C. L., Kabius, B., Urban, K., Herrmann, K., Gui, G.J., Schubert, J., Zander, W., Braginski, A. I., and Heiden, C., Physica C 175, 545 (1991).CrossRefGoogle Scholar
21.Jia, C. L., Kabius, B., Urban, K., Herrmann, K., Schubert, J., Zander, W., Braginski, A. I., and Heiden, C., Physica C 196, 211 (1992).CrossRefGoogle Scholar
22.Alarco, J. A., Olsson, E., Ivanov, Z. G., Nilsson, P. Å., Winkler, D., Stepantsov, E. A., and Tzalenchuk, A. Y., Ultramicroscopy 51, 239 (1993).CrossRefGoogle Scholar
23.Træholt, C., Wen, J. G., Zandbergen, H. W., Shen, Y., and, Hilgenkamp, J.W. M., Physica C 230, 425 (1994).CrossRefGoogle Scholar
24.Kabius, B., Seo, J.W., Amrein, T., Siegel, M., Urban, K., and Schultz, L., Physica C 231, 123 (1994).CrossRefGoogle Scholar
25.Ravikumar, V. and Dravid, V. P., in Atomic-Scale Imaging of Surfaces and Interfaces, edited by Biegelsen, D. K., Smith, D. J., and Tong, D. S. Y. (Mater. Res. Soc. Symp. Proc. 295, Pittsburgh, PA, 1993), p. 115.Google Scholar
26.Babcock, S. E. and Larbalestier, D. C., J. Mater. Res. 5, 919 (1990).CrossRefGoogle Scholar
27.Amrein, T., Schultz, L., Kabius, B., and Urban, K., Phys. Rev. B 51, 6792 (1995).CrossRefGoogle Scholar
28.Miller, D. J., Roberts, T. A., Kang, J. H., Talvacchio, J., Buchholz, D. B., and Chang, R. P. H., Appl. Phys. Lett. 66, 2561 (1995).CrossRefGoogle Scholar
29.Heinig, N. F., Redwing, R. D., Tsu, I-F., Gurevich, A., Nord-man, J. E., Babcock, S. E., and Larbalestier, D. C., unpublished.Google Scholar
30.Kaiser, D. L., Holtzberg, F., Scott, B. A., and McGuire, T. R., Appl. Phys. Lett. 51, 1040 (1987).CrossRefGoogle Scholar
31.Zhu, Y. M., Suenaga, M., and Tafto, J., Philos. Mag. A 67, 1057 (1993).CrossRefGoogle Scholar
32.Tietz, L. A. and Carter, C. B., Physica C 182, 241 (1991).CrossRefGoogle Scholar
33.Laval, J. Y. and Swiatnicki, W., Physica C 221, 11 (1994).CrossRefGoogle Scholar
34.Carter, C. B., Acta Metall. 36, 2753 (1988).CrossRefGoogle Scholar
35.Gayle, F. W. and Kaiser, D. L., J. Mater. Res. 6, 908 (1991).CrossRefGoogle Scholar
36.Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J., Electron Microscopy of Thin Crystals (Butterworths, London, 1967), Chap. 11.Google Scholar
37.Tunstall, W. J., Hirsch, P. B., and Steeds, J., Philos. Mag. A 9, 99 (1964).CrossRefGoogle Scholar
38.Zhu, Y. M., Philos. Mag. 69, 717 (1994).CrossRefGoogle Scholar
39.Verwerft, M., Dijken, D. K., DeHosson, J. T. M., and Van Der Steen, A. C., Phys. Rev. B 50, 3271 (1994).CrossRefGoogle Scholar
40.Weertman, J. and Weertman, J. R., Elementary Dislocation Theory (Oxford Univ. Press, New York, 1992), Chap. 2.Google Scholar
41.Ledbetter, H., J. Mater. Res. 7, 2905 (1992).CrossRefGoogle Scholar
42.Shindo, Y., Ledbetter, H., and Nozaki, H., J. Mater. Res. 10, 7 (1995).CrossRefGoogle Scholar
43.Jorgensen, J. D., Pei, S., Lightfoot, P., Hinks, D. G., Veal, B. W., Dabrowski, B., Paulikas, A. P., and Kleb, R., Physica C 171, 93 (1990).CrossRefGoogle Scholar
44.Tsu, I-F., Zhang, Na, and Babcock, S. E., unpublished.Google Scholar
45.Zhu, Y. M., Corcoran, Y. L., and Suenaga, M., Interface Sci. 1, 359 (1993).Google Scholar
46.Moeckly, B. H., Lathrop, D. K., and Buhrman, R. A., Phys. Rev. B 47, 400 (1993).CrossRefGoogle Scholar
47.Sarnelli, E., Interface Sci. 1, 187 (1993).Google Scholar
48.Zhang, Na, Master Thesis, Univ. of Wisconsin-Madison.Google Scholar
49.Babcock, S. E. and Larbalestier, D. C., J. Phys. Chem. Solids 55, 1125 (1994).CrossRefGoogle Scholar
50.Gao, Y., Merkle, K. L., Bai, G., Chang, H. L. M., and Lam, D. J., Physica C 174, 1 (1991).CrossRefGoogle Scholar
51.Chisholm, M. F. and Smith, D. A., Philos. Mag. A 59, 181 (1989).CrossRefGoogle Scholar
52.Wang, J. L., Tsu, I-F., Cai, X. Y., Kelly, R. J., Vaudin, M. D., Babcock, S. E., and Larbalestier, D. C., J. Mater. Res. 11, 868 (1996).CrossRefGoogle Scholar
53.Likarev, K. K., Rev. Nid. Phys. 51, 101 (1979).Google Scholar
54.Chisholm, M. F., Pennycook, S. J., Norton, D. P., and Browning, N. D., Interface Sci. 1, 339 (1993).Google Scholar
55.Froehlich, O. M., Schulze, H., Beck, B., Alff, L., Gross, R., and Huebener, R. P., Appl. Phys. Lett. 66, 2289 (1995).CrossRefGoogle Scholar
56.Cai, X. Y. and Tsu, I-F., unpublished results obtained after submission of this manuscript.Google Scholar